Abstract
Let P be a set of n points on the plane in general position, n ≥ 3. The edge rotation graph \({\mathcal{E} \mathcal{R} \mathcal{G}(P,k)}\) of P is the graph whose vertices are the plane geometric graphs on P with exactly k edges, two of which are adjacent if one can be obtained from the other by an edge rotation. In this paper we study some structural properties of \({\mathcal{E} \mathcal{R} \mathcal{G}(P,k)}\) , such as its connectivity and diameter. We show that if the vertices of \({\mathcal{E} \mathcal{R} \mathcal{G}(P,k)}\) are not triangulations of P, then it is connected and has diameter O(n 2). We also show that the chromatic number of \({\mathcal{E} \mathcal{R} \mathcal{G}(P,k)}\) is O(n), and show how to compute an implicit coloring of its vertices. We also study edge rotations in edge-labelled geometric graphs.
Similar content being viewed by others
References
Aichholzer O., Reinhardt K.: A quadratic distance bound on sliding between crossing-free spanning trees. Comput. Geom. Theory Appl. 37(3), 155–161 (2007)
Bose P., Hurtado F.: Flips in planar graphs. Comput. Geom. Theory Appl. 42(1), 60–80 (2009)
Estivill-Castro V., Noy M., Urrutia J.: On the chromatic number of tree graphs. Discret. Math. 223(1–3), 363–366 (2000)
Goddard W., Swart H.C.: Distances between graphs under edge operations. Discret. Math. 161, 121–132 (1996)
Hernando, C., Hurtado, F., Mora, M., Rivera-Campo, E.: Grafos de árboles etiquetados y grafos de árboles geométricos etiquetados. In: Proc. X Encuentros de Geometría Computacional, pp. 13–19 (2003)
Hurtado F., Noy M., Urrutia J.: Flipping edges on triangulations. Discret. Comput. Geom. 22, 333–346 (1999)
Lawson C.L.: Transforming triangulations. Discret. Math. 3, 365–372 (1972)
Lawson, C.L.: Software for C 1 surface interpolation. In: Mathematical Software III, pp. 161–194 (1977)
Lucas J.: Untangling binary trees via rotations. Comput. J. 47(2), 259–269 (2004)
Lucas J.: An improved kernel size for rotation distance in binary trees. Inf. Process. Lett. 110, 481–484 (2010)
Pallo J.: An efficient upper bound of the rotation distance of binary trees. Inf. Process. Lett. 73(3-4), 87–92 (2000)
Author information
Authors and Affiliations
Corresponding author
Additional information
J.M. Díaz-Báñez is partially supported by Project FEDER MEC MTM2009-08652, and the ESF EUROCORES programme EuroGIGA-ComPoSe IP04-MICINN Project EUI-EURC-2011-4306. C. Huemer partially supported by Projects MEC MTM2009-07242 and Gen. Cat. DGR 2009SGR1040 and the ESF EUROCORES programme EuroGIGA, CRP ComPoSe, MICINN Project EUI-EURC-2011-4306. J. Cano and J. Urrutia partially supported by grants CONACyT CB-2007/80268, and by Project MEC MTM2009-08652.
Rights and permissions
About this article
Cite this article
Cano, J., Díaz-Báñez, JM., Huemer, C. et al. The Edge Rotation Graph. Graphs and Combinatorics 29, 1207–1219 (2013). https://doi.org/10.1007/s00373-012-1201-z
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-012-1201-z