Skip to main content
Log in

On the Ihara Zeta Function of Cones Over Regular Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

In this paper we derive a formula of the Ihara zeta function of a cone over a regular graph that involves the spectrum of the adjacency matrix of the cone. We show that the Ihara zeta function and the spectrum of the adjacency matrix of the cone determine each other and we characterize those cones that satisfy the graph theory Riemann hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bass H.: The Ihara-Selberg zeta function of a tree lattice. Int. J. Math. 3, 717–797 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cooper, Y.: Properties determined by the Ihara zeta function of a graph. Elect. J. Combin. 16, #R84 (2009)

  3. Czarneski, D.: Zeta functions of finite graphs. PhD Dissertation, LSU (2005)

  4. Finck H.J., Grohmann G.: Vollständiges Produkt, chromatische Zahl und characteristisches Polynom regularer Graphen I. Wiss. Z. Techn. Hochsch. Ilmenau 11, 1–3 (1965)

    MathSciNet  MATH  Google Scholar 

  5. Hashimoto, K.: Zeta functions of finite graphs and representations of p-adic groups. In: Advance Studies in Pure Mathematics, vol. 15, pp. 211–280. Academic Press, New York (1989)

  6. Ihara Y.: On discrete subgroups of the two by two projective linear group over p-adic fields. J. Math. Soc. Japan 18, 219–235 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kotani M., Sunada T.: Zeta functions of finite graphs. J. Math. Sci. Univ. Tokyo 7, 7–25 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Lubotzky A., Phillips R., Sarnak P.: Ramanujan graphs. Combinatorica 8, 261–277 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Malmskog B., Manes M.: “Almost divisibility” in the Ihara zeta functions of certain ramified coverings of q + 1-regular graphs. J. Linear Algebra Appl. 432, 2486–2506 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mellein, A.: What does the zeta function determine? Manuscript, LSU (2001)

  11. Stark H.M., Terras A.: Zeta functions of finite graphs and coverings, I. Adv. Math. 121, 124–165 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Stark H.M., Terras A.: Zeta functions of finite graphs and coverings, III. Adv. Math. 208, 467–489 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Somodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayati, P., Somodi, M. On the Ihara Zeta Function of Cones Over Regular Graphs. Graphs and Combinatorics 29, 1633–1646 (2013). https://doi.org/10.1007/s00373-012-1223-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-012-1223-6

Keywords

Mathematics Subject Classification (2000)

Navigation