Abstract
In this paper we derive a formula of the Ihara zeta function of a cone over a regular graph that involves the spectrum of the adjacency matrix of the cone. We show that the Ihara zeta function and the spectrum of the adjacency matrix of the cone determine each other and we characterize those cones that satisfy the graph theory Riemann hypothesis.
Similar content being viewed by others
References
Bass H.: The Ihara-Selberg zeta function of a tree lattice. Int. J. Math. 3, 717–797 (1992)
Cooper, Y.: Properties determined by the Ihara zeta function of a graph. Elect. J. Combin. 16, #R84 (2009)
Czarneski, D.: Zeta functions of finite graphs. PhD Dissertation, LSU (2005)
Finck H.J., Grohmann G.: Vollständiges Produkt, chromatische Zahl und characteristisches Polynom regularer Graphen I. Wiss. Z. Techn. Hochsch. Ilmenau 11, 1–3 (1965)
Hashimoto, K.: Zeta functions of finite graphs and representations of p-adic groups. In: Advance Studies in Pure Mathematics, vol. 15, pp. 211–280. Academic Press, New York (1989)
Ihara Y.: On discrete subgroups of the two by two projective linear group over p-adic fields. J. Math. Soc. Japan 18, 219–235 (1966)
Kotani M., Sunada T.: Zeta functions of finite graphs. J. Math. Sci. Univ. Tokyo 7, 7–25 (2000)
Lubotzky A., Phillips R., Sarnak P.: Ramanujan graphs. Combinatorica 8, 261–277 (1988)
Malmskog B., Manes M.: “Almost divisibility” in the Ihara zeta functions of certain ramified coverings of q + 1-regular graphs. J. Linear Algebra Appl. 432, 2486–2506 (2010)
Mellein, A.: What does the zeta function determine? Manuscript, LSU (2001)
Stark H.M., Terras A.: Zeta functions of finite graphs and coverings, I. Adv. Math. 121, 124–165 (1996)
Stark H.M., Terras A.: Zeta functions of finite graphs and coverings, III. Adv. Math. 208, 467–489 (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bayati, P., Somodi, M. On the Ihara Zeta Function of Cones Over Regular Graphs. Graphs and Combinatorics 29, 1633–1646 (2013). https://doi.org/10.1007/s00373-012-1223-6
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-012-1223-6