Skip to main content
Log in

Enomoto and Ota’s Conjecture Holds for Large Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

In 2000, Enomoto and Ota conjectured that if a graph G satisfies \(\sigma _{2}(G) \ge |G| + k - 1\), then for any set of k vertices \(v_{1}, \ldots , v_{k}\) and for any positive integers \(n_{1}, \ldots , n_{k}\) with \(\sum n_{i} = |G|\), there exists a partition of V(G) into k paths \(P_{1}, \ldots , P_{k}\) such that \(v_{i}\) is an end of \(P_{i}\) and \(|P_{i}| = n_{i}\) for all i. We prove this conjecture when |G| is large. Our proof uses the Regularity Lemma along with several extremal lemmas, concluding with an absorbing argument to retrieve misbehaving vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bollobás, B.: Extremal Graph Theory, 2nd edn. Dover Publications Inc, Mineola (2004)

    MATH  Google Scholar 

  2. Chartrand, G., Lesniak, L., Zhang, P.: Graphs & Digraphs, fifth edn. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  3. Coll, V., Halperin, A., Magnant, C.: Graph linkedness with prescribed lengths. Int. J. Graph Theory Appl. 2(1), 1–21 (2016)

    Google Scholar 

  4. Diestel, R.: Graph Theory, Volume of 173 Graduate Texts in Mathematics, 4th edn. Springer, Heidelberg (2010)

    Google Scholar 

  5. Enomoto, H., Ota, K.: Partitions of a graph into paths with prescribed endvertices and lengths. J. Graph Theory 34(2), 163–169 (2000)

    Article  MathSciNet  Google Scholar 

  6. Gould, R.J., Magnant, C., Nowbandegani, P.S.: Placing specified vertices at precise locations on a Hamiltonian cycle. Graphs Combin. 33(2), 369–385 (2017)

    Article  MathSciNet  Google Scholar 

  7. Hladký, J.: Graph containment problems. Ph.D. Thesis, The University of Warwick (2011)

  8. Komlós, J., Sárközy, G.N., Szemerédi, E.: Blow-up lemma. Combinatorica 17(1), 109–123 (1997)

    Article  MathSciNet  Google Scholar 

  9. Komlós J., Shokoufandeh A., Simonovits M., Szemerédi E (2002) The regularity lemma and Its applications in graph theory. In: Khosrovshahi G.B., Shokoufandeh A., Shokrollahi A (eds) Theoretical aspects of computer science. TACSci 2000. Lecture notes in computer science, vol 2292. Springer, Berlin, pp 84–112. https://doi.org/10.1007/3-540-45878-6_3

    Chapter  Google Scholar 

  10. Kühn, D., Osthus, D., Treglown, A.: An Ore-type theorem for perfect packings in graphs. SIAM J. Discrete Math. 23(3), 1335–1355 (2009)

    Article  MathSciNet  Google Scholar 

  11. Magnant, C., Martin, D.M.: An asymptotic version of a conjecture by Enomoto and Ota. J. Graph Theory 64(1), 37–51 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Menger, K.: Zur allgemeinen kurventheorie. Fundamenta Mathematicae 10(1), 96–115 (1927)

    Article  Google Scholar 

  13. Ore, O.: Note on Hamilton circuits. Am. Math. Mon. 67, 55 (1960)

    Article  MathSciNet  Google Scholar 

  14. Szemerédi, E: Regular partitions of graphs. In: Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), volume 260 of Colloq. Internat. CNRS, pp. 399–401. CNRS, Paris, (1978)

  15. Treglown, A: The Regularity Lemmaand applications to packings in graphs. PhD thesis, University of Birmingham (2007)

  16. Williamson, J.E.: Panconnected graphs II. Periodica Mathematica Hungarica 8(2), 105–116 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are heavily indebted to Kenta Ozeki for his careful reading and extremely helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pouria Salehi Nowbandegani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coll, V., Halperin, A., Magnant, C. et al. Enomoto and Ota’s Conjecture Holds for Large Graphs. Graphs and Combinatorics 34, 1619–1635 (2018). https://doi.org/10.1007/s00373-018-1956-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-018-1956-y

Keywords

Navigation