Abstract
In graph theory there are intimate connections between the expansion properties of a graph and the spectrum of its Laplacian. In this paper we define a notion of combinatorial expansion for simplicial complexes of general dimension, and prove that similar connections exist between the combinatorial expansion of a complex, and the spectrum of the high dimensional Laplacian defined by Eckmann. In particular, we present a Cheeger-type inequality, and a high-dimensional Expander Mixing Lemma. As a corollary, using the work of Pach, we obtain a connection between spectral properties of complexes and Gromov’s notion of geometric overlap. Using the work of Gundert and Wagner, we give an estimate for the combinatorial expansion and geometric overlap of random Linial-Meshulam complexes.
Similar content being viewed by others
References
R. Aharoni, E. Berger and R. Meshulam: Eigenvalues and homology of ag complexes and vector representations of graphs, Geometric and functional analysis 15 (2005), 555–566.
N. Alon and F. R. K. Chung: Explicit construction of linear sized tolerant networks, Discrete Mathematics 72 (1988), 15–19.
N. Alon: Eigenvalues and expanders, Combinatorica 6 (1986), 83–96.
N. Alon and V. D. Milman: λ1, isoperimetric inequalities for graphs, and superconcentrators, Journal of Combinatorial Theory, Ser. B 38 (1985), 73–88.
M. Blum, R. M. Karp, O. Vorneberger, C. H. Papadimitriou and M. Yan-nakakis: Complexity of testing whether a graph is a superconcentrator, Information Processing Letters 13 (1981), 164–167.
Y. Bilu and N. Linial: Lifts, discrepancy and nearly optimal spectral gap, Combinatorica 26 (2006), 495–519.
R. Beigel, G. Margulis and D. A. Spielman: Fault diagnosis in a small constant number of parallel testing rounds, in: Proceedings of the fifth annual ACM symposium on Parallel algorithms and architectures, ACM, 1993, 21–29.
P. Buser: A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. 15 (1982), 213–230.
J. Cheeger: A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis 195 (1970), 199.
F. Chung: The Laplacian of a hypergraph, Expanding Graphs (Joel Friedman, ed.), DIMACS, 10, AMS, 1993, 21–36.
F. R. K. Chung: Spectral graph theory, CBMS, Amer Mathematical Society, 1997.
D. Dotterrer and M. Kahle: Coboundary expanders, Journal of Topology and Analysis 4 (2012), 499–514.
A. Duval, C. Klivans and J. Martin: Simplicial matrix-tree theorems, Transactions of the American Mathematical Society 361 (2009), 6073–6114.
J. Dodziuk: Finite-difference approach to the Hodge theory of harmonic forms, American Journal of Mathematics 98 (1976), 79–104.
J. Dodziuk: Difference equations, isoperimetric inequality and transience of certain random walks, Trans. Amer. Math. Soc. 284 (1984).
B. Eckmann: Harmonische funktionen und randwertaufgaben in einem komplex, Commentarii Mathematici Helvetici 17 (1944), 240–255.
P. Erdős and A. Rényi: On random graphs, Publicationes Mathematicae Debrecen 6 (1959), 290–297.
P. Erdős and A. Rényi: On the evolution of random graphs, Bull. Inst. Internat. Statist 38 (1961), 343–347.
J. Fox, M. Gromov, V. Lafforgue, A. Naor and J. Pach: Overlap properties of geometric expanders, J. Reine Angew. Math. 671 (2012), 49–83.
J. Friedman and N. Pippenger: Expanding graphs contain all small trees, Combinatorica 7 (1987), 71–76.
J. Friedman: Computing Betti numbers via combinatorial Laplacians, Algorithmica 21 (1998), 331–346.
J. Friedman: A proof of Alon's second eigenvalue conjecture and related problems, Mem. Amer. Math. Soc. 195 (2008).
J. Friedman and A. Wigderson: On the second eigenvalue of hypergraphs, Combinatorica 15 (1995), 43–65.
H. Garland: p-adic curvature and the cohomology of discrete subgroups of p-adic groups, The Annals of Mathematics 97 (1973), 375–423.
M. Gromov: Singularities, expanders and topology of maps. Part 2: from combinatorics to topology via algebraic isoperimetry, Geometric And Functional Analysis 20 (2010), 416–526.
A. Gundert and M. Szedlák: Higher dimensional discrete Cheeger inequalities, Annual Symposium on Computational Geometry (New York, NY, USA), SOCG14, ACM, 2014.
A. Gundert and U. Wagner: On Laplacians of random complexes, in: Proceedings of the 2012 symposuim on Computational Geometry, ACM, 2012, 151–160.
S. Hoory, N. Linial and A. Wigderson: Expander graphs and their applications, Bulletin of the American Mathematical Society 43 (2006), 439–562.
S. Janson: On concentration of probability, Contemporary combinatorics 10 (2002), 1–9.
W. Kook, V. Reiner and D. Stanton: Combinatorial Laplacians of matroid complexes, Journal of the American Mathematical Society 13 (2000), 129–148.
N. Linial and R. Meshulam: Homological connectivity of random 2-complexes, Combinatorica 26 (2006), 475–487.
A. Lubotzky, R. Phillips and P. Sarnak: Ramanujan graphs, Combinatorica 8 (1988), 261–277.
A. Lubotzky, B. Samuels and U. Vishne: Ramanujan complexes of type Ãd, Israel Journal of Mathematics 149 (2005), 267–299.
A. Lubotzky: Discrete groups, expanding graphs and invariant measures, vol. 125, Birkhauser, 2010.
A. Lubotzky: Expander graphs in pure and applied mathematics, Bull. Amer. Math. Soc. 49 (2012), 113–162.
D. W. Matula and F. Shahrokhi: Sparsest cuts and bottlenecks in graphs, Discrete Applied Mathematics 27 (1990), 113–123.
A. Marcus, D. A. Spielman and N. Srivastava: Interlacing families I: Bipartite Ramanujan graphs of all degrees, arXiv preprint arXiv:1304.4132, (2013).
R. Meshulam and N. Wallach: Homological connectivity of random k-dimensional complexes, Random Structures & Algorithms 34 (2009), 408–417.
J. Matoušsek and U. Wagner: On Gromov's method of selecting heavily covered points, Discrete & Computational Geometry 52 (2014), 1–33.
A. Nilli: On the second eigenvalue of a graph, Discrete Mathematics 91 (1991), 207–210.
I. Newman and Y. Rabinovich: On multiplicative λ-approximations and some geometric applications, in: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '12, SIAM, 2012, 51–67.
R. I. Oliveira: Concentration of the adjacency matrix and of the Laplacian in random graphs with independent edges, Arxiv preprint ArXiv:0911.0600v2 (2010).
J. Pach: A Tverberg-type result on multicolored simplices, Computational Geometry 10 (1998), 71–76.
O. Parzanchevski and R. Rosenthal: Simplicial complexes: spectrum, homology and random walks, arXiv preprint arXiv:1211.6775 (2012).
D. Puder: Expansion of random graphs: New proofs, new results, Inventiones mathematicae (2014), 1–64.
J. Steenbergen, C. Klivans and S. Mukherjee: A Cheeger-type inequality on simplicial complexes, Advances in Applied Mathematics 56 (2014), 56–77.
R. M. Tanner: Explicit concentrators from generalized n-gons, SIAM Journal on Algebraic and Discrete Methods 5 (1984), 287.
T. Tao: Basic theory of expander graphs, http://terrytao.wordpress.com/2011/12/02/245b-notes-1-basic-theory-of-expander-graphs/, 2011.
A. Żuk: La propriété (T) de Kazhdan pour les groupes agissant sur les polyedres, in: Comptes rendus de l'Académie des sciences, Série 1, Mathématique 323 (1996), 453–458.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Parzanchevski, O., Rosenthal, R. & Tessler, R.J. Isoperimetric inequalities in simplicial complexes. Combinatorica 36, 195–227 (2016). https://doi.org/10.1007/s00493-014-3002-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00493-014-3002-x