Abstract
We start a new characterization of the geometric 2-design AG d (n,q) among all simple 2-designs with the same parameters by handling the cases d ∈ {1,2,3,n — 2}. For d ≠ 1, our characterization is in terms of line sizes, and for d = 1 in terms of the number of affine hyperplanes. We also show that the number of non-isomorphic resolvable designs with the parameters of AG1(n,q) grows exponentially with linear growth of n.
Similar content being viewed by others
References
T. Beth, D. Jungniokel and H. Lenz: Design Theory (2nd edition). Cambridge University Press (1999).
F. Buekenhout: Une charactérisation des espaces affines basée sur la notion de droite, Math. Z. 111 1969, 367–371.
D. Clark, D. Jungniokel and V. D. Tonohev: Correction to: “Exponential bounds on the number of designs with affine parameters”, J. Combin. Des. 19 2011, 156–166.
C. J. Colbourn and J. H. Dinitz: The Crc Handbook of Combinatorial Designs, Crc Press, oca Raton (1996).
C. J. Colbourn and J. H. Dinitz: The Crc Handbook of Combinatorial Designs (2nd edition). Chapman & Hall/Crc, Boca Raton (2007).
P. Dembowski: Eine Kennzeichnung der endlichen affinen Räume, Arch. Math. 15 1964, 146–154.
P. Dembowski: Berichtigung und Ergänzung zu “Eine Kennzeichnung der endlichen affinen Räume”, Arch. Math. 18 1967, 111–112.
P. Dembowski and A. Wagner: Some characterizations of finite projective spaces, Arch. Math. 11 1960, 465–469.
M. Hall: Automorphisms of Steiner triple systems, Ibm J. Res. Develop. 4 1960, 460–471.
R. Fuji-Hara and S. A. Vanstone: The existence of orthogonal resolutions of lines in AG(n,q), J. Combin. Theory Ser. 45 1987, 139–147.
J. W. P. Hirsohfeld: Projective Geometries over Finite Fields (2nd edition), Oxford University Press (1998).
J. W. P. Hirsohfeld: Finite Projective Spaces of Three Dimensions, Oxford University Press (1985).
D. Jungniokel: Characterizing geometric designs, Rend. Mat. Appl. 30 2010, 111–120.
D. Jungniokel: Characterizing geometric designs, II, J. Combin. Theory Ser. 118 2011, 623–633.
D. Jungniokel and V. D. Tonohev: The number of designs with geometric parameters grows exponentially, Des. Codes Cryptogr. 55 2010, 131–140.
C. Lefèvre-Percsy: Characterizations of designs constructed from affine and projective spaces, European J. Comb. 1 1980, 347–352.
H. Lenz: Ein kurzer Weg zur analytischen Geometrie, Math.-Phys. Semesterber. 6 1959, 57–67.
K. Metsch: A generalization of a result of Dembowski and Wagner, Des. Codes Cryptogr. 60 2011, 277–282.
M. Oxenham and R. Casse: On the resolvability of Hall triple systems, Boll. Unione Mat. Ital. Serie 8 1-B (1998), 639–649.
L. Teirlinck: On projective and affine hyperplanes, J. Combin. Theory Ser. 28 1980, 290–306.
R. M. Wilson: An existence theory for pairwise balanced designs, Iii. Proof of the existence conjectures, J. Combin. Theor. 18 1975, 71–79.
Author information
Authors and Affiliations
Corresponding author
Additional information
In memoriam Hanfried Lenz
Rights and permissions
About this article
Cite this article
Jungnickel, D., Metsch, K. The characterization problem for designs with the parameters of AGd(n, q). Combinatorica 36, 513–535 (2016). https://doi.org/10.1007/s00493-014-3212-2
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00493-014-3212-2