Skip to main content
Log in

Maximal sets with no solution to x+y=3z

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

In this paper, we are interested in a generalization of the notion of sum-free sets. We address a conjecture rst made in the 90s by Chung and Goldwasser. Recently, after some computer checks, this conjecture was formulated again by Matolcsi and Ruzsa, who made a rst signicant step towards it. Here, we prove the full conjecture by giving an optimal upper bound for the Lebesgue measure of a 3-sum-free subset A of [0; 1], that is, a set containing no solution to the equation x+y=3z where x, y and z are restricted to belong to A. We then address the inverse problem and characterize precisely, among all sets with that property, those attaining the maximal possible measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Baltz, P. Hegarty, J. Knape, U. Larsson and T. Schoen: The structure of maximum subsets of {1,…, n} with no solutions to a+b=kc, Electron. J. Combin. 12 (2005), Research Paper 19.

  2. P. Candela and O. Sisask: On the asymptotic maximal density of a set avoiding solutions to linear equations modulo a prime, Acta Math. Hungar. 132 (2011), 223–243.

    Article  MathSciNet  MATH  Google Scholar 

  3. F. R. K. Chung and J. L. Goldwasser: Maximum subsets of [0; 1] with no solutions to x+y=kz, Electron. J. Combin. 3 (1996).

  4. F. R. K. Chung and J. L. Goldwasser: Integer Sets Containing no Solution to x+y=3z, The mathematics of Paul Erdős (1997), Springer, 218-227.

  5. J.-M. Deshouillers, G. A. Freiman, V. Sós and M. Temkin: On the structure of sum-free sets, 2, Astérisque 258 (1999), 149–161.

    MathSciNet  MATH  Google Scholar 

  6. K. Dilcher and L. Lucht: Onnite pattern-free sets of integers, Acta Arith. 121 (2006), 313–325.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Henstock and A. M. Macbeath: On the measure of sum sets, I. The theorems of Brunn, Minkowski and Lusternik, Proc. London Math. Soc. 3 (1953), 182–194.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Lucht: Dichteschranken für die Lösbarkeit gewisser linearer Gleichungen, J. Reine Angew. Math. 285 (1976), 209–217.

    MathSciNet  MATH  Google Scholar 

  9. M. Matolcsi and I. Z. Ruzsa: Sets with no solutions to x+y=3z, Europ. J. Combin. 34 (2013), 1411–1414.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. F. Roth: On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109.

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Z. Ruzsa: Diameter of sets and measure of sumsets, Monatsh. Math. 112 (1991),323–328.

    Article  MathSciNet  MATH  Google Scholar 

  12. I. Z. Ruzsa: Solving a linear equation in a set of integers I, Acta Arith. 65 (1993), 259–282.

    MathSciNet  MATH  Google Scholar 

  13. I. Z. Ruzsa: Solving a linear equation in a set of integers II, Acta Arith. 72 (1995), 385–397.

    MathSciNet  MATH  Google Scholar 

  14. T. Sanders: On Roth’s theorem on progressions, Ann. of Math. 174 (2011), 619–636.

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Schur: Über die Kongruenz x m +y m = z m (mod p), Jahresber. Deutsch. Math.-Verein. 25 (1917), 114–117.

    Google Scholar 

  16. W. Sierpiński: Surla question de la mesurabilité de la base de M. Hamel, Fund. Math 1 (1920), 105–111.

    MATH  Google Scholar 

  17. W. D. Wallis, A. P. Street and J. S. Wallis: Combinatorics: Room Squares, Sum-Free Sets, Hadamard Matrices, Lecture Notes in Mathematics 292, Springer, 1972.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Plagne.

Additional information

Both authors are supported by the ANR grant Cæsar, number ANR 12 - BS01 - 0011.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plagne, A., de Roton, A. Maximal sets with no solution to x+y=3z . Combinatorica 36, 229–248 (2016). https://doi.org/10.1007/s00493-015-3100-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-015-3100-4

Mathematics Subject Classication (2000)

Navigation