Abstract
In this paper, we are interested in a generalization of the notion of sum-free sets. We address a conjecture rst made in the 90s by Chung and Goldwasser. Recently, after some computer checks, this conjecture was formulated again by Matolcsi and Ruzsa, who made a rst signicant step towards it. Here, we prove the full conjecture by giving an optimal upper bound for the Lebesgue measure of a 3-sum-free subset A of [0; 1], that is, a set containing no solution to the equation x+y=3z where x, y and z are restricted to belong to A. We then address the inverse problem and characterize precisely, among all sets with that property, those attaining the maximal possible measure.
Similar content being viewed by others
References
A. Baltz, P. Hegarty, J. Knape, U. Larsson and T. Schoen: The structure of maximum subsets of {1,…, n} with no solutions to a+b=kc, Electron. J. Combin. 12 (2005), Research Paper 19.
P. Candela and O. Sisask: On the asymptotic maximal density of a set avoiding solutions to linear equations modulo a prime, Acta Math. Hungar. 132 (2011), 223–243.
F. R. K. Chung and J. L. Goldwasser: Maximum subsets of [0; 1] with no solutions to x+y=kz, Electron. J. Combin. 3 (1996).
F. R. K. Chung and J. L. Goldwasser: Integer Sets Containing no Solution to x+y=3z, The mathematics of Paul Erdős (1997), Springer, 218-227.
J.-M. Deshouillers, G. A. Freiman, V. Sós and M. Temkin: On the structure of sum-free sets, 2, Astérisque 258 (1999), 149–161.
K. Dilcher and L. Lucht: Onnite pattern-free sets of integers, Acta Arith. 121 (2006), 313–325.
R. Henstock and A. M. Macbeath: On the measure of sum sets, I. The theorems of Brunn, Minkowski and Lusternik, Proc. London Math. Soc. 3 (1953), 182–194.
L. Lucht: Dichteschranken für die Lösbarkeit gewisser linearer Gleichungen, J. Reine Angew. Math. 285 (1976), 209–217.
M. Matolcsi and I. Z. Ruzsa: Sets with no solutions to x+y=3z, Europ. J. Combin. 34 (2013), 1411–1414.
K. F. Roth: On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109.
I. Z. Ruzsa: Diameter of sets and measure of sumsets, Monatsh. Math. 112 (1991),323–328.
I. Z. Ruzsa: Solving a linear equation in a set of integers I, Acta Arith. 65 (1993), 259–282.
I. Z. Ruzsa: Solving a linear equation in a set of integers II, Acta Arith. 72 (1995), 385–397.
T. Sanders: On Roth’s theorem on progressions, Ann. of Math. 174 (2011), 619–636.
I. Schur: Über die Kongruenz x m +y m = z m (mod p), Jahresber. Deutsch. Math.-Verein. 25 (1917), 114–117.
W. Sierpiński: Surla question de la mesurabilité de la base de M. Hamel, Fund. Math 1 (1920), 105–111.
W. D. Wallis, A. P. Street and J. S. Wallis: Combinatorics: Room Squares, Sum-Free Sets, Hadamard Matrices, Lecture Notes in Mathematics 292, Springer, 1972.
Author information
Authors and Affiliations
Corresponding author
Additional information
Both authors are supported by the ANR grant Cæsar, number ANR 12 - BS01 - 0011.