Skip to main content

Advertisement

Log in

A prediction-based adaptive grouping differential evolution algorithm for constrained numerical optimization

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, a new adaptive grouping differential evolution (AGDE) algorithm is proposed to improve the optimization performance by implementing a prediction strategy of the constraints for constrained optimization problems. It is unnecessary to calculate the constraint values when dealing with the constraints in this method. The constraints are handled after a simple prediction according to the Lipschitz condition. When the constraints are very complex, the load arisen from the calculation of the constraint values is reduced dramatically and the feasibility of the solutions remains with great probability. In AGDE algorithm, the population is dynamically grouped to three subpopulations with respective newly-designed mutation strategy. Meanwhile, the mutation factor and crossover probability are adopted associated with the evolutionary process according to the information of the entire population. Both of the above improvements not only increase the diversity of population and speed up the convergence, but also reduce the complexity of the parameter selection. Four sets of comparative experiments are carried out to evaluate the feasibility and effectiveness of the proposed method that deals with the constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aguirre AH, Riondal SB, Coello CAC, Lizarraga GL, Montes EM (2004) Handling constraints using multiobjective optimization concepts. Int J Numer Methods Eng 59(15):1989–2017

    Article  MATH  Google Scholar 

  • Ali MM, Kajee-Bagdadi Z (2009) A local exploration-based differential evolution algorithm for constrained global optimization. Appl Math Comput 208(1):31–48

    Article  MathSciNet  MATH  Google Scholar 

  • Arkat J, Abdollahzadeh H, Ghahve H (2012) A new branch and bound algorithm for cell formation problem. Appl Math Model 36(10):5091–5100

    Article  MathSciNet  MATH  Google Scholar 

  • Boskovic B, Brest J et al (2011) History mechanism supported differential evolution for chess evaluation function tuning. Soft Comput 15(4):667–683

    Article  Google Scholar 

  • Breiman L, Cutler A (1993) A deterministic algorithm for global optimization. Math Program 58(1–3):179–199

    Article  MathSciNet  MATH  Google Scholar 

  • Brest J, Greiner S, Boskovic B (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6):646–657

    Article  Google Scholar 

  • Coello CAC (2000) Constraint-handling using an evolutionary multiobjective optimization technique. Civ Eng Environ Syst 17(4):319–346

    Article  Google Scholar 

  • Evtushenko YG, Malkova VU, Stanevichyus AA (2007) Parallelization of the global extremum searching process. Autom Remote Control 68(5):787–798

    Article  MathSciNet  MATH  Google Scholar 

  • Floudas CA, Pardalos PM (1987) A collection of test problems for constrained global optimization algorithms. Springer, Berlin

    Google Scholar 

  • Fowkes JM, Gould NIM, Farmer CL (2012) A branch and bound algorithm for the global optimization of Hessian Lipschitz continuous functions. J Glob Optim. doi:10.1007/s10898-012-9937-9

  • García-Martínez C, Lozano M, Herrera F, Molina D, Sánchez AM (2008) Global and local real-coded genetic algorithms based on parent-centric crossover operators. Eur J Oper Res 10(3):281–295

    Google Scholar 

  • Gergel VP (1997) A global optimization algorithm for multivariate functions with Lipschitzian first derivatives. J Glob Optim 10(3):257–281

    Article  MathSciNet  MATH  Google Scholar 

  • Grishagin VA, Sergeyev YD, Strongin RG (1997) Parallel characteristical algorithms for solving problems of global optimization. J Glob Optim 10(2):185–206

    Article  MathSciNet  MATH  Google Scholar 

  • Gunaratne A, Wu Z (2011) A penalty function method for constrained molecular dynamics simulation. Int J Numer Anal Model 8(3):496–517

    MathSciNet  MATH  Google Scholar 

  • Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evol Comput 9(2):159–195

    Article  Google Scholar 

  • Horst R, Pardalos PM, Thoai NV (1995) Introduction to global optimization. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Jones DR, Perttunen CD, Stuckman BE (1993) Lipschitzian optimization without the Lipschitz constant. J Optim Theory Appl 29(1):157–181

    Article  MathSciNet  Google Scholar 

  • Ketabi A, Naseh M (2012) Single-phase transformer modeling for inrush currents simulation using differential evolution. Eur Trans Electr Power 22(3):402–411

    Article  Google Scholar 

  • Koziel S, Michalewicz Z (1999) Evolutionary algorithm, homomorphous mappings, and constrained parameter optimization. Evol Comput 7(1):19–44

    Article  Google Scholar 

  • Kvasov DE, Sergeyev YD (2009) A univariate global search working with a set of Lipschitz constants for the first derivative. Optim Lett 3(2):303–318

    Article  MathSciNet  MATH  Google Scholar 

  • Land AH, Doig AG (1960) An automatic method of solving discrete programming problems. Econometrica 28(3):497–520

    Article  MathSciNet  MATH  Google Scholar 

  • Lera D, Sergeyev YD (2002) Global minimization algorithms for holder functions. Bit 42(1):119–133

    Article  MathSciNet  MATH  Google Scholar 

  • Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Article  Google Scholar 

  • Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput 11(2):1679–1696

    Article  Google Scholar 

  • Mandal A, Zafar H, Das S, Vasilakos A (2012) A modified differential evolution algorithm for shaped beam linear array antenna design. Prog Electromagn Res 125:439–457

    Article  Google Scholar 

  • Mezura-Montes E, Coello Coello CA (2005) A simple multimember evolution strategy to solve constrained optimization problems. IEEE Trans Evol Comput 9(1):1–17

    Article  Google Scholar 

  • Miettinen K, Makela MM, Toivanen J (2003) Numerical comparison of some penalty-based constraint handling techniques in genetic algorithms. J Glob Optim 27(4):427–446

    Article  MathSciNet  MATH  Google Scholar 

  • Mockus J (2011) On the pareto optimality in the context of Lipschitzian optimization. Informatica 22(4):521–536

    MathSciNet  MATH  Google Scholar 

  • Neri F, Iacca G, Mininno E (2011) Disturbed Exploitation compact Differential Evolution for limited memory optimization problems. Inf Sci 181(12):2469–2487

    Article  MathSciNet  Google Scholar 

  • Neri F, Tirronen V (2010) Recent advances in differential evolution: a review and experimental analysis. Artif Intell Rev 33(1):61–106

    Article  Google Scholar 

  • Paulavičius R, Žilinskas J (2007) Analysis of different norms and corresponding Lipschitz constants for global optimization in multidimensional case. Inf Technol Control 36(4):383–387

    Google Scholar 

  • Paulavičius R, Žilinskas J, Grothey A (2009) Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds. Optim Lett 4(2):173–183

    Article  Google Scholar 

  • Pintér JD (1996) Global optimization in action: continuous and Lipschitz optimization: algorithms, implementations and applications. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–C417

    Article  Google Scholar 

  • Romeijn HE, Smith RL (1994) Simulated annealing for constrained global optimization. J Glob Optim 5(2):101–126

    Google Scholar 

  • Runarsson TP, Yao X (2000) Stochastic ranking for constrained evolutionary optimization. IEEE Trans Evol Comput 4(3):284–294

    Article  Google Scholar 

  • Sergeyev YD (1998) Global one-dimensional optimization using smooth auxiliary functions. Math Program 81(1):127–146

    Article  MathSciNet  MATH  Google Scholar 

  • Sergeyev YD, Famularo D, Pugliese P (2001) Index branch-and-bound algorithm for Lipschitz univariate global optimization with multiextremal constraints. J Glob Optim 21(3):317–341

    Article  MathSciNet  MATH  Google Scholar 

  • Sergeyev YD, Kvasov DE (2006) Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J Optim 16(3):910–937

    Article  MathSciNet  MATH  Google Scholar 

  • Shih FY, Edupuganti VG (2009) A differential evolution based algorithm for breaking the visual steganalytic system. Soft Comput 13(4):345–353

    Article  Google Scholar 

  • Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous space. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Nanyang Technological University, Singapore, IIT Kanpur, Kanpur, India, Technical Report, KanGAL # 2005005

  • Surry PD, Radcliffe NJ (1997) The COMOGA method: constrained optimization by multiobjective genetic algorithm. Control Cybern 26(3):391–412

    MathSciNet  Google Scholar 

  • Takahama T, Sakai S (2009) Constrained optimization by the epsilon constrained differential evolution with gradient-based mutation and feasible elites. Pac J Optim 5(2):261–282

    MathSciNet  MATH  Google Scholar 

  • Tessema B, Yen GG (2006) A self-adaptive penalty function based algorithm for constrained optimization. In: Proceeding of IEEE congress on evolutionary computation. Vancouver, Canada, pp 246–253

  • Törn A, Žilinskas A (1989) Global optimization. Lecture notes in computer science. Springer, Berlin

    Google Scholar 

  • Wang Y, Cai Z (2012a) A dynamic hybrid framework for constrained evolutionary optimization. IEEE Trans Syst Man Cybern Part B Cybern 42(1):203–217

    Article  Google Scholar 

  • Wang Y, Cai Z (2012b) Combining multiobjective optimization with differential evolution to solve constrained optimization problems. IEEE Trans Evol Comput 16(1):117–134

    Article  Google Scholar 

  • Wang Y, Cai Z (2011) Constrained evolutionary optimization by means of (\(\mu \)+\(\lambda \))-differential evolution and improved adaptive trade-off model. Evol Comput 19(2):249–285

    Article  Google Scholar 

  • Wang Y, Cai Z, Guo G, Zhou Y (2007) Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems. IEEE Trans Syst Man Cybern 37(3):560–575

    Article  Google Scholar 

  • Wang Y, Cai Z, Zhang Q (2011) Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans Evol Comput 15(1):55–66

    Article  MathSciNet  Google Scholar 

  • Wang Y, Cai Z, Zhang Q (2012) Enhancing the search ability of differential evolution through orthogonal crossover. Inf Sci 185(1):153–177

    Article  MathSciNet  Google Scholar 

  • Weber M, Neri F, Tirronen V (2011) Shuffle or update parallel differential evolution for large scale optimization. Soft Comput 15(11):2089–2107

    Article  Google Scholar 

  • Yousefi H, Handroos H, Soleymani A (2008) Application of differential evolution in system identification of a servo-hydraulic system with a flexible load. Mechatronics 18:513–528

    Article  Google Scholar 

  • Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102

    Article  Google Scholar 

  • Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyong Kong.

Additional information

Communicated by G. Acampora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, X., Ouyang, H. & Piao, X. A prediction-based adaptive grouping differential evolution algorithm for constrained numerical optimization. Soft Comput 17, 2293–2309 (2013). https://doi.org/10.1007/s00500-013-1090-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-013-1090-y

Keywords

Navigation