Skip to main content

Advertisement

Log in

A multi-strategy random weighted gray wolf optimizer-based multi-layer perceptron model for short-term wind speed forecasting

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Gray wolf optimizer (GWO) that is one of the meta-heuristic optimization algorithms is principally based on the hunting method and social hierarchy of the gray wolves in the nature. This paper presents the Multi-strategy Random weighted Gray Wolf Optimizer (MsRwGWO) including some effective and novel mechanisms added to the original GWO algorithm to improve the search performance. These are a transition mechanism for updating the parameter \(\overrightarrow{a}\), a weighted updating mechanism, a mutation operator, a boundary checking mechanism, a greedy selection mechanism, and an updating mechanism of leader three wolves (alpha, beta, and delta wolves). We utilized some benchmark functions known as CEC 2014 test suite to evaluate the performance of MsRwGWO algorithm in this study. Firstly, during the solution of optimization problems, the MsRwGWO algorithm's behaviors such as convergence, search history, trajectory, and average distance were analyzed. Secondly, the comparison statistical results of MsRwGWO and GWO algorithms were presented for CEC 2014 benchmarks with 10, 30, and 50 dimensions. In addition, some of the popular meta-heuristic algorithms taken from the literature were compared with the proposed MsRwGWO algorithm for 30D CEC 2014 test problems. Finally, MsRwGWO algorithm was adapted to the training process of a Multi-Layer Perceptron (MLP) used in wind speed estimation and comparative results with GWO-based MLP were obtained. The statistical results of the benchmark problems and training performance of MLP model for short-term wind speed forecasting show that the proposed MsRwGWO algorithm has better performance than GWO algorithm. Source code of MsRwGWO is publicly available at https://github.com/uguryuzgec/MsRwGWO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15.
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley

    MATH  Google Scholar 

  2. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks, 1995. Proceedings, pp 1942–1948

  3. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No.98TH8360), pp 69–73

  4. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput J 8:687–697. https://doi.org/10.1016/j.asoc.2007.05.007

    Article  Google Scholar 

  5. Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehensive survey: Artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 42:21–57. https://doi.org/10.1007/s10462-012-9328-0

    Article  Google Scholar 

  6. Nanda SJ, Panda G (2014) A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol Comput 16:1–18. https://doi.org/10.1016/j.swevo.2013.11.003

    Article  Google Scholar 

  7. Tayarani MHN, Yao X, Xu H (2015) Meta-heuristic algorithms in car engine design: a literature survey. IEEE Trans Evol Comput 19:609–629. https://doi.org/10.1109/TEVC.2014.2355174

    Article  Google Scholar 

  8. Beheshti Z, Shamsuddin SMH (2013) A review of population-based meta-heuristic algorithm. Int J Adv Soft Comput Appl 5(1):1–35

    Google Scholar 

  9. Holland JH (1975) Adaptation in natural and artificial systems. Ann Arbor MI Univ Michigan Press Ann Arbor, p 183. https://doi.org/10.1137/1018105

  10. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  11. Price KV, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization. Springer Science & Business Media

    MATH  Google Scholar 

  12. Yüzgeç U, Becerikli Y, Türker M (2006) Nonlinear predictive control of a drying process using genetic algorithms. ISA Trans 45:589–602. https://doi.org/10.1016/S0019-0578(07)60234-1

    Article  Google Scholar 

  13. Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng Optim 38:129–154. https://doi.org/10.1080/03052150500384759

    Article  MathSciNet  Google Scholar 

  14. Bhattacharjee KK, Sarmah SP (2014) Shuffled frog leaping algorithm and its application to 0/1 knapsack problem. Appl Soft Comput J 19:252–263. https://doi.org/10.1016/j.asoc.2014.02.010

    Article  Google Scholar 

  15. Yang XS (2009) Harmony search as a metaheuristic algorithm. Stud Comput Intell 191:1–14

    Article  Google Scholar 

  16. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. SIMULATION 76:60–68. https://doi.org/10.1177/003754970107600201

    Article  Google Scholar 

  17. Gendreau M, Iori M, Laporte G, Martello S (2006) A Tabu search algorithm for a routing and container loading problem. Transp Sci 40:342–350. https://doi.org/10.1287/trsc.1050.0145

    Article  Google Scholar 

  18. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(80):671–680. https://doi.org/10.1126/science.220.4598.671

    Article  MathSciNet  MATH  Google Scholar 

  19. Vinet L, Zhedanov A (2011) A ‘missing’ family of classical orthogonal polynomials. J Phys A Math Theor 44:085201. https://doi.org/10.1088/1751-8113/44/8/085201

    Article  MathSciNet  MATH  Google Scholar 

  20. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1:28–39. https://doi.org/10.1109/MCI.2006.329691

    Article  Google Scholar 

  21. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B Cybern 26:29–41. https://doi.org/10.1109/3477.484436

    Article  Google Scholar 

  22. Li X, Shao Z, Qian J (2002) An optimizing method based on autonomous animats: fish-swarm algorithm. Syst Eng Theory Pract 22:32–38

    Google Scholar 

  23. Timmis J, Hone A, Stibor T, Clark E (2008) Theoretical advances in artificial immune systems. Theor Comput Sci 403:11–32. https://doi.org/10.1016/j.tcs.2008.02.011

    Article  MathSciNet  MATH  Google Scholar 

  24. Timmis J, Andrews P, Hart E (2010) On artificial immune systems and swarm intelligence. Swarm Intell 4:247–273. https://doi.org/10.1007/s11721-010-0045-5

    Article  Google Scholar 

  25. Das S, Biswas A, Dasgupta S, Abraham A (2009) Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications. Found Comput Intell 3(3):23–55. https://doi.org/10.1007/978-3-642-01085-9_2

    Article  Google Scholar 

  26. Li MS, Ji TY, Tang WJ et al (2010) Bacterial foraging algorithm with varying population. BioSystems 100:185–197. https://doi.org/10.1016/j.biosystems.2010.03.003

    Article  Google Scholar 

  27. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci (Ny) 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  28. Sabri NM, Puteh M, Mahmood MR (2013) A review of gravitational search algorithm. Int J Adv Soft Comput Appl 5(3):1–39

    Google Scholar 

  29. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12:702–713. https://doi.org/10.1109/TEVC.2008.919004

    Article  Google Scholar 

  30. Lim WL, Wibowo A, Desa MI, Haron H (2016) A biogeography-based optimization algorithm hybridized with tabu search for the quadratic assignment problem. Comput Intell Neurosci. https://doi.org/10.1155/2016/5803893

    Article  Google Scholar 

  31. Sang HY, Duan PY, Li JQ (2018) An effective invasive weed optimization algorithm for scheduling semiconductor final testing problem. Swarm Evol Comput 38:42–53. https://doi.org/10.1016/j.swevo.2017.05.007

    Article  Google Scholar 

  32. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  33. Yang XS, Deb S (2014) Cuckoo search: recent advances and applications. Neural Comput Appl 24:169–174

    Article  Google Scholar 

  34. Yang X-S (2009) Cuckoo Search via Lévy flights. In: 2009 world congress on nature and biologically inspired computing (NaBIC), pp 210–214

  35. Heidari AA, Mirjalili S, Faris H et al (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  36. Bairathi D, Gopalani D (2020) A novel swarm intelligence based optimization method: Harris hawk optimization. In: Advances in intelligent systems and computing, pp 832–842

  37. Coello Coello CA, Becerra RL (2004) Efficient evolutionary optimization through the use of a cultural algorithm. Eng Optim 36:219–236. https://doi.org/10.1080/03052150410001647966

    Article  Google Scholar 

  38. Soza C, Becerra RL, Riff MC, Coello Coello CA (2011) Solving timetabling problems using a cultural algorithm. Appl Soft Comput 11:337–344. https://doi.org/10.1016/j.asoc.2009.11.024

    Article  Google Scholar 

  39. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  40. Kılıç H, Yüzgeç U (2019) Improved antlion optimization algorithm via tournament selection and its application to parallel machine scheduling. Comput Ind Eng 132:166–186. https://doi.org/10.1016/j.cie.2019.04.029

    Article  Google Scholar 

  41. Iscan H, Gunduz M (2014) Parameter analysis on fruit fly optimization algorithm. J Comput Commun 2:137–141. https://doi.org/10.1109/SITIS.2015.55

    Article  Google Scholar 

  42. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  43. Nadimi-Shahraki MH, Taghian S, Mirjalili S (2021) An improved grey wolf optimizer for solving engineering problems. Expert Syst Appl 166:113917. https://doi.org/10.1016/j.eswa.2020.113917

    Article  Google Scholar 

  44. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  45. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE congress on evolutionary computation, CEC 2007, pp 4661–4667

  46. Hosseini S, Al Khaled A (2014) A survey on the imperialist competitive algorithm metaheuristic: implementation in engineering domain and directions for future research. Appl Soft Comput J 24:1078–1094

    Article  Google Scholar 

  47. Yang XS (2007) Firefly algorithm. Nature-inspired metaheuristic algorithms, pp 79–90

  48. Yang XS (2010) Firefly algorithm, Lévy flights and global optimization. In: Research and development in intelligent systems XXVI: incorporating applications and innovations in intelligent systems XVII, pp 1–10

  49. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  50. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27:1053–1073. https://doi.org/10.1007/s00521-015-1920-1

    Article  Google Scholar 

  51. Mafarja M, Aljarah I, Heidari AA et al (2018) Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowl Based Syst 161:185–204. https://doi.org/10.1016/j.knosys.2018.08.003

    Article  Google Scholar 

  52. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  53. Barman M, Dev Choudhury NB (2020) A similarity based hybrid GWO-SVM method of power system load forecasting for regional special event days in anomalous load situations in Assam, India. Sustain Cities Soc. https://doi.org/10.1016/j.scs.2020.102311

    Article  Google Scholar 

  54. Dogan L, Yüzgeç U (2018) Robot path planning using gray wolf optimizer. In: International conference on advanced technologies, computer engineering and science (ICATCES’18), pp 69–74

  55. Karakas M, Yüzgeç U (2019) Opposition based gray wolf algorithm for feature selection in classification problems. In: 3rd International symposium on multidisciplinary studies and innovative technologies, ISMSIT 2019—proceedings. Institute of Electrical and Electronics Engineers Inc

  56. Madadi A, Motlagh MM (2014) Optimal control of DC motor using grey wolf optimizer algorithm. Tech J Eng Appl 4:373–379

    Google Scholar 

  57. Medjahed SA, Ait Saadi T, Benyettou A, Ouali M (2016) Gray wolf optimizer for hyperspectral band selection. Appl Soft Comput J 40:178–186. https://doi.org/10.1016/j.asoc.2015.09.045

    Article  Google Scholar 

  58. Li L, Sun L, Guo J et al (2017) Modified discrete grey wolf optimizer algorithm for multilevel image thresholding. Comput Intell Neurosci. https://doi.org/10.1155/2017/3295769

    Article  Google Scholar 

  59. Ge L, Xian Y, Yan J et al (2020) A hybrid model for short-term PV output forecasting based on PCA-GWO-GRNN. J Mod Power Syst Clean Energy 8:1268–1275. https://doi.org/10.35833/MPCE.2020.000004

    Article  Google Scholar 

  60. Liu H, Wu H, Li Y (2018) Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction. Energy Convers Manag 161:266–283. https://doi.org/10.1016/j.enconman.2018.02.006

    Article  Google Scholar 

  61. Niu T, Wang J, Zhang K, Du P (2018) Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat algorithm with the cognition strategy. Renew Energy 118:213–229. https://doi.org/10.1016/j.renene.2017.10.075

    Article  Google Scholar 

  62. Xiao L, Wang J, Dong Y, Wu J (2015) Combined forecasting models for wind energy forecasting: a case study in China. Renew Sustain Energy Rev 44:271–288. https://doi.org/10.1016/j.rser.2014.12.012

    Article  Google Scholar 

  63. Zhang W, Qu Z, Zhang K et al (2017) A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting. Energy Convers Manag 136:439–451. https://doi.org/10.1016/j.enconman.2017.01.022

    Article  Google Scholar 

  64. Wang J, Du P, Niu T, Yang W (2017) A novel hybrid system based on a new proposed algorithm—multi-objective whale optimization algorithm for wind speed forecasting. Appl Energy 208:344–360. https://doi.org/10.1016/j.apenergy.2017.10.031

    Article  Google Scholar 

  65. Osório GJ, Matias JCO, Catalão JPS (2015) Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew Energy 75:301–307. https://doi.org/10.1016/j.renene.2014.09.058

    Article  Google Scholar 

  66. Fei SW, He Y (2015) Wind speed prediction using the hybrid model of wavelet decomposition and artificial bee colony algorithm-based relevance vector machine. Int J Electr Power Energy Syst 73:625–631. https://doi.org/10.1016/j.ijepes.2015.04.019

    Article  Google Scholar 

  67. Rahmani R, Yusof R, Seyedmahmoudian M, Mekhilef S (2013) Hybrid technique of ant colony and particle swarm optimization for short term wind energy forecasting. J Wind Eng Ind Aerodyn 123:163–170. https://doi.org/10.1016/j.jweia.2013.10.004

    Article  Google Scholar 

  68. Altan A, Karasu S, Zio E (2021) A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2020.106996

    Article  Google Scholar 

  69. Fu W, Wang K, Tan J, Zhang K (2020) A composite framework coupling multiple feature selection, compound prediction models and novel hybrid swarm optimizer-based synchronization optimization strategy for multi-step ahead short-term wind speed forecasting. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2019.112461

    Article  Google Scholar 

  70. Wang J, Wang S, Yang W (2019) A novel non-linear combination system for short-term wind speed forecast. Renew Energy 143:1172–1192. https://doi.org/10.1016/j.renene.2019.04.154

    Article  Google Scholar 

  71. Wu C, Wang J, Chen X et al (2020) A novel hybrid system based on multi-objective optimization for wind speed forecasting. Renew Energy 146:149–165. https://doi.org/10.1016/j.renene.2019.04.157

    Article  Google Scholar 

  72. Singh D, Dhillon JS (2019) Ameliorated grey wolf optimization for economic load dispatch problem. Energy 169:398–419. https://doi.org/10.1016/j.energy.2018.11.034

    Article  Google Scholar 

  73. Pradhan M, Roy PK, Pal T (2016) Grey wolf optimization applied to economic load dispatch problems. Int J Electr Power Energy Syst 83:325–334. https://doi.org/10.1016/j.ijepes.2016.04.034

    Article  Google Scholar 

  74. Jayabarathi T, Raghunathan T, Adarsh BR, Suganthan PN (2016) Economic dispatch using hybrid grey wolf optimizer. Energy 111:630–641. https://doi.org/10.1016/j.energy.2016.05.105

    Article  Google Scholar 

  75. Pradhan M, Roy PK, Pal T (2018) Oppositional based grey wolf optimization algorithm for economic dispatch problem of power system. Ain Shams Eng J 9:2015–2025. https://doi.org/10.1016/j.asej.2016.08.023

    Article  Google Scholar 

  76. Gupta S, Deep K, Mirjalili S, Kim JH (2020) A modified sine cosine algorithm with novel transition parameter and mutation operator for global optimization. Expert Syst Appl 154:113395. https://doi.org/10.1016/j.eswa.2020.113395

    Article  Google Scholar 

  77. Liang JJ, Qu BY, Suganthan PN (2014) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization

  78. Long W, Liang X, Cai S et al (2017) A modified augmented Lagrangian with improved grey wolf optimization to constrained optimization problems. Neural Comput Appl 28:421–438. https://doi.org/10.1007/s00521-016-2357-x

    Article  Google Scholar 

  79. Long W, Jiao J, Liang X, Tang M (2018) An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization. Eng Appl Artif Intell 68:63–80. https://doi.org/10.1016/j.engappai.2017.10.024

    Article  Google Scholar 

  80. Tascikaraoglu A, Uzunoglu M (2014) A review of combined approaches for prediction of short-term wind speed and power. Renew Sustain Energy Rev 34:243–254. https://doi.org/10.1016/j.rser.2014.03.033

    Article  Google Scholar 

  81. Ma Z, Chen H, Wang J et al (2020) Application of hybrid model based on double decomposition, error correction and deep learning in short-term wind speed prediction. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2019.112345

    Article  Google Scholar 

  82. Lei M, Shiyan L, Chuanwen J et al (2009) A review on the forecasting of wind speed and generated power. Renew Sustain Energy Rev 13:915–920. https://doi.org/10.1016/j.rser.2008.02.002

    Article  Google Scholar 

  83. Chang W-Y (2014) A literature review of wind forecasting methods. J Power Energy Eng 02:161–168. https://doi.org/10.4236/jpee.2014.24023

    Article  Google Scholar 

  84. Liu H, Li Y, Duan Z, Chen C (2020) A review on multi-objective optimization framework in wind energy forecasting techniques and applications. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2020.113324

    Article  Google Scholar 

  85. Dokur E (2020) Swarm decomposition technique based hybrid model for very short-term solar PV power generation forecast. Elektron ir Elektrotechnika 26:79–83. https://doi.org/10.5755/j01.eie.26.3.25898

    Article  Google Scholar 

  86. Dokur E, Kurban M, Ceyhan S (2016) Hybrid model for short term wind speed forecasting using empirical mode decomposition and artificial neural network. In: ELECO 2015—9th international conference electrical engineering, pp; 420–423. https://doi.org/10.1109/ELECO.2015.7394591

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğur Yüzgeç.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İnaç, T., Dokur, E. & Yüzgeç, U. A multi-strategy random weighted gray wolf optimizer-based multi-layer perceptron model for short-term wind speed forecasting. Neural Comput & Applic 34, 14627–14657 (2022). https://doi.org/10.1007/s00521-022-07303-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07303-4

Keywords

Navigation