Skip to main content

Advertisement

Log in

High embedding capacity in 3D model using intelligent Fuzzy based clustering

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

High embedding capacity plays a vital role in the watermarking schemes to secure the ownership, authenticity, and copyright-related issues of 3D models. This study describes the watermark embedding using the High Embedding Capacity in 3D Models based on Intelligent Fuzzy Clustering scheme that includes standard Fuzzy C-means (HE-FCM) and Intelligent Fuzzy C-Means (HE-IFCM). Efficiency of optimized cluster segmentation is evaluated and compared with other optimization algorithms. Bit embedding intervals are identified in the resultant clusters to embed the watermark data resulting high embedding capacity. The embedded watermark can be extracted by performing the reverse operation. The embedding capacity, distortion rate and robustness are analyzed using Peak Signal to Noise Ratio (PSNR), Root Means Square Error, correlation coefficient and Hausdorff distance. This scheme is capable of embedding 3 KB to 15 KB for small models and 164KB to 820 KB for larger models achieving around 68 dB of PSNR with less distortion. HE-IFCM is successful in embedding large capacity of watermark data resulting in minimal distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chazelle B, Dobkin DP, Shouraboura N, Tal A (1997) Strategies for polyhedral surface decomposition: an experimental study. Comput Geometry 7(5–6):327–342

    Article  MathSciNet  Google Scholar 

  2. Katz S, Tal A (2003) Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans Gr (TOG) 22(3):954–961

    Article  Google Scholar 

  3. Shlafman S, Tal A, Katz S (2002) Metamorphosis of polyhedral surfaces using decomposition. Comput Gr Forum 21:219–228

    Article  Google Scholar 

  4. Garland M, Willmott A, Heckbert PS (2001) “Hierarchical face clustering on polygonal surfaces,” In: Proceedings of the 2001 symposium on Interactive 3D graphics, pp 49–58

  5. Gelfand N, Guibas LJ (2004) “Shape segmentation using local slippage analysis,” In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pp 214–223

  6. Liu R, Zhang H (2004) “Segmentation of 3d meshes through spectral clustering,” In: 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings. pp 298–305, IEEE

  7. Lin H-YS, Liao H-YM, Lin J-C (2006) Visual salience-guided mesh decomposition. IEEE Trans Multimedia 9(1):46–57

    Article  Google Scholar 

  8. Lai Y-K, Hu S-M, Martin RR, Rosin PL (2008) “Fast mesh segmentation using random walks,” In: Proceedings of the 2008 ACM symposium on Solid and physical modeling, pp 183–191

  9. Golovinskiy A, Funkhouser T (2008) “Randomized cuts for 3d mesh analysis,” In: ACM SIGGRAPH Asia 2008 papers, pp 1–12

  10. Attene M, Falcidieno B, Spagnuolo M (2006) Hierarchical mesh segmentation based on fitting primitives. Vis Comput 22(3):181–193

    Article  Google Scholar 

  11. Ho T-C, Chuang J-H et al (2012) Volume based mesh segmentation. J Inform Sci Eng 28(4):705–722

    MathSciNet  Google Scholar 

  12. El Zein OM, El Bakrawy LM, Ghali NI (2017) A robust 3d mesh watermarking algorithm utilizing fuzzy c-means clustering. Future Comput Informat J 2(2):148–156

    Article  Google Scholar 

  13. Thiyagarajan P, Natarajan V, Aghila G, Venkatesan VP, Anitha R (2013) Pattern based image steganography. 3D Res 4(1):1

    Article  Google Scholar 

  14. Soliman MM, Hassanien AE, Onsi HM (2015) A Robust 3D Mesh Watermarking Approach Using Genetic Algorithms. In: Intelligent Systems'2014. Advances in Intelligent Systems and Computing, vol 323. Springer, Cham, pp 731–741. https://doi.org/10.1007/978-3-319-11310-4_64

  15. Mouhamed MR, Soliman MM, Darwish AA, Hassanien AE (2018) Interest points detection of 3d mesh model using k means and shape curvature, In: International Conference on Advanced Intelligent Systems and Informatics, pp 415–424, Springer

  16. Motwani RC, Motwani MC, Bryant BD, Harris Jr FC, Agarwal AS (2010) “Watermark embedder optimization for 3d mesh objects using classification based approach, In: 2010 International Conference on Signal Acquisition and Processing, pp 125–129, IEEE

  17. Petitcolas FA, Anderson RJ, Kuhn MG (1999) Information hiding-a survey. Proc IEEE 87(7):1062–1078

    Article  Google Scholar 

  18. Bogomjakov A, Gotsman C, Isenburg M (2008) Distortion-free steganography for polygonal meshes. Comput Gr Forum 27:637–642

    Article  Google Scholar 

  19. Lin C-H, Chao M-W, Chen J-Y, Yu C-W, Hsu W-Y (2013) A high-capacity distortion-free information hiding algorithm for 3D polygon models. Int J Innov Comput Inf Control 9(3):1321–1335

    Google Scholar 

  20. Cheng Y-M, Wang C-M (2006) A high-capacity steganographic approach for 3D polygonal meshes. Vis Comput 22(9):845–855

    Article  Google Scholar 

  21. Yang Y, Peyerimhoff N, Ivrissimtzis I (2012) Linear correlations between spatial and normal noise in triangle meshes. IEEE Trans Visual Comput Gr 19(1):45–55

    Article  Google Scholar 

  22. Tsai Y-Y (2014) An adaptive steganographic algorithm for 3D polygonal models using vertex decimation. Multimed Tools Appl 69(3):859–876

    Article  Google Scholar 

  23. Ohbuchi R, Masuda H, Aono M (1998) Watermarking three-dimensional polygonal models through geometric and topological modifications. IEEE J Sel Areas Commun 16(4):551–560

    Article  Google Scholar 

  24. Cayre F, Macq B (2003) Data hiding on 3-D triangle meshes. IEEE Trans Signal Process 51(4):939–949

    Article  MathSciNet  Google Scholar 

  25. Wang C-M, Cheng Y-M (2005) An efficient information hiding algorithm for polygon models. Comput Gr Forum 24:591–600

    Article  Google Scholar 

  26. Chao M-W, Lin C-H, Yu C-W, Lee T-Y (2008) A high capacity 3D steganography algorithm. IEEE Trans Visual Comput Graphics 15(2):274–284

    Article  Google Scholar 

  27. Garg H, Agarwal S (2013) A secure image based watermarking for 3D polygon mesh. Sci Technol 16(4):287–303

    Google Scholar 

  28. Jian-qiu J, Min-ya D, Hu-jun B, Qun-sheng P (2004) Watermarking on 3D mesh based on spherical wavelet transform. J Zhejiang Univ-Sci A 5(3):251–258

    Article  Google Scholar 

  29. Kwon K-R, Kwon S-G, Lee S-H, Kim T-S, Lee K-I (2003) Watermarking for 3d polygonal meshes using normal vector distributions of each patch, In: Proceedings 2003 International Conference on Image Processing (Cat. No. 03CH37429), vol 2, pp II–499, IEEE

  30. Karni Z, Gotsman C (2000) Spectral compression of mesh geometry, In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pp 279–286

  31. Bezdek JC, Ehrlich R, Full W (1984) Fcm: the fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203

    Article  Google Scholar 

  32. Atallah MJ (1983) A linear time algorithm for the hausdorff distance between convex polygons, Department of computer science technical reports

  33. Sharma LK, Ojha DB (2015) Imperceptible watermarking scheme for 3D triangular mesh. Int J Appl Innov Eng Manag 4(12):28–34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Modigari Narendra.

Ethics declarations

Conflict of interest

The authors Modigari Narendra, M L Valarmathi, L Jani Anbarasi, Vergin Raja Sarobin M, and Fadi Al-Turjman declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narendra, M., Valarmathi, M.L., Anbarasi, L.J. et al. High embedding capacity in 3D model using intelligent Fuzzy based clustering. Neural Comput & Applic 34, 17783–17792 (2022). https://doi.org/10.1007/s00521-022-07404-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07404-0

Keywords

Navigation