Abstract
Recent development in the field of digital media technology has resulted in the generation of a huge number of images. Consequently, content-based image retrieval has emerged as an important area in multimedia computing. Research in human perception of image content suggests that the semantic cues play an important role in image retrieval. In this paper, we present a new paradigm to establish the semantics in image databases based on multi-user relevance feedback. Relevance feedback mechanism is one way to incorporate the users’ perception during image retrieval. By treating each feedback as a weak classifier and combining them together, we are able to capture the categories in the users’ mind and build a user-centered semantic hierarchy in the database to support semantic browsing and searching. We present an image retrieval system based on a city-landscape image database comprising of 3,009 images. We also compare our approach with other typical methods to organize an image database. Superior results have been achieved by the proposed framework.
Similar content being viewed by others
References
Smeulders A.W.M., Worring M., Santini S., Gupta A., Jain R. (2000). Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12):1349–1380
Mehrotra, S., Rui, R., Ortega, M., Huang, T.S.: Supporting content-based queries over images in mars. In: Proceedings of IEEE International Conference on Multimedia Computing Systems, pp. 632–633 (1997)
Ma, W.Y., Manjunath, B.: Netra: A toolbox for navigating large image databases. In: Proceedings of IEEE ICIP, pp. 568–571 (1997)
Gupta A., Jain R. (1997). Visual information retrieval. Commun. ACM 40(5):70–79
Rogowitz B., Frese T., Smith J., Bouman C., Kalin E. (1998). Perceptual image smilarity experiments. Proc. SPIE 8:576–590
Wang J., Li J., Wiederhold G. (2002). Simplicity: semantics-sensitive integrated matching for picture libraries. IEEE Trans. PAMI 23(9):947–963
Vailaya A., Figueiredo M.A.T., Jain A.K., Zhang H.J. (2001). Image classification for content-based image retrieval. IEEE Trans. Image Process. 10(1):117–129
Chen J., Bouman C.A., Dalton J.C. (2000). Hierarchical browsing and search of large image databases. IEEE Trans. Image Process. 9:442–455
Ji C., Ma S. (1997). Combinations of weak classifiers. IEEE Trans. Neural Netw. 8:32–42
Bishop C.M. (1995). Neural Networks for Pattern Recognition. University Press, New York
Kuncheva L. (2002). A theoretical study on six classifier fusion strategies. IEEE Trans. Pattern Anal. Mach. Intell. 24(2):281–286
Ponnusamy, A., Breen, C., Khan, L., Wang, L.: Ontology-based image classification using neural networks. In: SPIE: The International Society for Optical Engineering, Boston (2002)
Guo G.-D., Jain A.K., Ma W.-Y., Zhang J.-J. (2002). Learning similarity measure for natural image retrieval with relevance feedback. IEEE Trans. Neural Netw. 13(4):811–820
Schapire, R.: Theoretical views of boosting and applications. In: 10th International Conference on Algorithmic Learning Theory, pp. 13–25 (1999)
Li J., Wang J. (2003). Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans. Pattern Anal. Mach. Intell. 25(9):1075–1088
Mori, Y., Takahashia, H., Oka, R.: Image-to-word transformation based on dividing and vector quantizing images with words. In: Proceedings of MISRM (1999)
Duygulu, P., Barnard, K., de Freitas N., Forsyth, D.: Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In: Proceedings of ECCV (2002)
Jeon, J., Lavrenko, V., Manmatha, R.: Automatic image annotation and retrieval using cross-media relevance models. In: Proceedings of ACM SIGIR (2003)
Barnard K., Duygulu P., de Fretias N., Forsyth D., Blei D., Jordan M.I. (2003). Matching words and pictures. J. Mach. Learn. Res. 3:1107–1135
Lu, Y., Hu, C., Zhu, X., Zhang, H.J., Yang, Q.: A unified framework for semantics and feature based relevance feedback in image retrieval systems. In: Proceedings of ACM Multimedia (2000)
Lee, C.S., Ma, W.-Y., Zhang, H.J.: Information embedding based on users relevance feedback for image retrieval. In: Proceedings of SPIE International Conference on Multimedia Storage and Archiving Systems (1999)
Fournier, J., Cord, M.: Long-term similarity learning in content-based image retrieval. In: Proceedings of IEEE International Conference on Image Processing (2002)
Yang, J., Li, Q., Zhuang, Y.: Image retrieval and relevance feedback using peer indexing. In: Proceedings of IEEE International Conference on Multimedia and Expo (2002)
Li M., Chen Z., Zhang H. (2002). Statistical correlation analysis in image retrieval. Pattern Recogn. 35:2687–2693
Zhuang, Y., Yang, J., Li, Q., Pan, Y.: A graphic-theoretic model for incremental relevance feedback in image retrieval. In: Proceedings of IEEE International Conference on Image Processing (2002)
Heisterkamp, D.R.: Building a latent semantic index of an image database from patterns of relevance feedback. In: Proceedings of 16th International Conference on Pattern Recognition (2002)
He X., King O., Ma W.-Y., Li M., Zhang H.-J. (2003). Learning a semantic space from user’s relevance feedback for image retrieval. IEEE Trans. Circuits Syst. Video Technol. 13(1):39–48
Hoi S.C.H., Lyu M.R., Jin R. (2006). A unified log-based relevance feedback scheme for image retrieval. IEEE Trans. Knowl. Data Eng. 18(4):509–524
Kohrs, A., Merialdo, B.: Improving collaborative filtering with multimedia indexing techniques to create user-adapting web sites. In: Proceedings of ACM International Conference on Multimedia (1999)
Zhang, H.J., Zhong, D.: A scheme for visual feature based image indexing. In: Proceedings of SPIE Conference on Storage Retrieval Image Video Databases, San Jose, pp. 36–46 (1995)
Zhong, D., Zhang, H.J., Chang, S.F.: Clustering methods for video browsing and annotation. In: Proceedings of SPIE Conference on Storage Retrieval Image Video Databases IV, San Jose, pp. 239–246 (1996)
Tieu K., Viola P. (2000). Boosting image retrieval. Proc. IEEE CVPR 1:228–235
Santini S., Gupta A., Jain R. (2001). Emergent semantics through interaction in image databases. IEEE Trans. Knowl. Data Eng. 13(3):337–351
Picard R., Minka T., Szummer M. (1996). Modeling subjectivity in image libraries. Proc. IEEE ICIP. 1:777–780
Rui Y., Huang T., Ortega M., Mehrotra S. (2002). Relevance feedback: A power tool in interactive content-based image . IEEE Trans. Circuits Syst. Video Tech. 13(4):811–820
Chawla N., Moore T., Hall L., Bowyer K., Kegelmeyer W., Springer C. (2003). Distributed learning with bagging-like performance. Pattern Recogn. Lett. 24:455–471
Vailaya A., Jain A.K., Zhang H.J. (1998). On image classification: City vs. landscape. Pattern Recogn. 31:1921–1936
Vailaya A., Zhang H., Liu F., Jain A.K. (2002). Automatic image orientation detection. IEEE Trans. Image Process. 11:746–755
Canny J. (1986). A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8:679–698
Jain A., Vailaya A. (1996). Image retrieval using color and shape. Pattern Recogn. 29:1233–1244
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rege, M., Dong, M. & Fotouhi, F. Building a user-centered semantic hierarchy in image databases. Multimedia Systems 12, 325–338 (2007). https://doi.org/10.1007/s00530-006-0049-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00530-006-0049-6