Abstract
Visualization of the three-dimensional flow within the Right Ventricle (RV) is a challenging issue due to the fully three-dimensional geometry of the ventricular cavity. To date proper characterization and quantification of the RV flow still remains incomplete, and techniques that can be easily applied to current medical imaging are scarce. A method for simulating the highly complex, multi directional flow within the RV is presented by coupling 4D echocardiography imaging with numerical simulations based on the Immersed Boundaries Method (IBM). A novel formulation for accurately computing the space–time distribution of the blood residence time inside the cavity is introduced. Results showed an initial compact vortex forming past the tricuspid orifice at early diastole that quickly breaks into a weakly turbulent flow pattern and rearranges, during systole, into a peculiar stream-wise vortex spinning out towards the pulmonary orifice. This arrangement is maintained when the Ejection Fraction (EF) is reduced from 58 to 32%. The average blood transit time is found to scale almost inversely proportional to the EF. A careful analysis of the residence time permitted to assess the relative significance of the different flow components (from the direct flow, with a residence time less than one heartbeat, to the residual volume, that stagnates in the ventricle) and their distribution in space.










Similar content being viewed by others
References
Bleasdale, R. A., and M. P. Frenneaux. Prognostic importance of right ventricular dysfunction. Heart Educ. Heart 88:323–324, 2002.
Bolger, A. F., E. Heiberg, M. Karlsson, L. Wigstrom, J. Engvall, et al. Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 9:741–747, 2007.
Carlhall, C., A. Fredriksson, J. Zajac, J. Eriksson, P. Dyverfeldt, et al. Visualization and quantification of 4D blood flow distribution and energetics in the right ventricle. J. Cardiovasc. Magn. Reson. 13:O83, 2011.
Domenichini, F. On the consistency of the direct forcing method in the fractional step solution of the Navier–Stokes equations. J. Comput. Phys. 227:6372–6384, 2008.
Domenichini, F. Three-dimensional impulsive vortex formation from slender orifices. J. Fluid Mech. 666:506–520, 2011.
Domenichini, F., and G. Pedrizzetti. Intraventricular vortex flow changes in the infarcted left ventricle: numerical results in an idealised 3D shape. Comput. Methods Biomech. Biomed. Eng. 14:95–101, 2011.
Eriksson, J., C. Carlhall, P. Dyverfeldt, J. Engvall, A. Bolger, and T. Ebbers. Semi-automatic quantification of 4D left ventricular blood flow. J. Cardiovasc. Magn. Reson. 12:9, 2010.
Fadlun, E. A., R. Verzicco, P. Orlandi, and J. Mohd-Yusof. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161:35–60, 2000.
Germano, M., U. Piomelli, P. Moin, and W. H. Cabot. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3:1760–1765, 1991.
Haddad, F., S. A. Hunt, D. N. Rosenthal, and D. J. Murphy. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 117:1436–1448, 2008.
Jeong, J., and F. Hussain. On the identification of a vortex. J. Fluid Mech. 285:69–94, 1995.
Kevin, L. G., and M. Barnard. Right ventricular failure. Continuing Educ. Anesth. Crit. Care Pain 7:89–94, 2007.
Kheradvar, A., H. Houle, G. Pedrizzetti, G. Tonti, T. Belcik, et al. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J. Am. Soc. Echocardiogr. 23:86–94, 2010.
La Vecchia, L., L. Zanolla, L. Varotto, C. Bonanno, G. L. Spadaro, et al. Reduced right ventricular ejection fraction as a marker for idiopathic dilated cardiomyopathy compared with ischemic left ventricular dysfunction. Am. Heart J. 142:181–189, 2001.
Markl, M., P. Kilner, and T. Ebbers. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 13:7, 2011.
Mehta, S. R., J. W. Eikelboom, M. K. Natarajan, R. Diaz, C. Yi, et al. Impact of right ventricular involvement on mortality and morbidity in patients with inferior myocardial infarction. J. Am. Coll. Cardiol. 37:37–43, 2001.
Pasipoularides, A., M. Shu, A. Shah, A. Tucconi, and D. D. Glower. RV instantaneous intraventricular diastolic pressure and velocity distributions in normal and volume overload awake dog disease models. Am. J. Physiol. Heart Circ. Physiol. 285:H1956–H1965, 2003.
Pasipoularides, A., M. Shu, A. Shah, M. S. Womack, and D. D. Glower. Diastolic right ventricular filling vortex in normal and volume overload states. Am. J. Physiol. Heart Circ. Physiol. 284:H1064–H1072, 2003.
Pasipoularides, A. D., M. Shu, M. S. Womack, A. Shah, O. von Ramm, and D. D. Glower. RV functional imaging: 3-D echo-derived dynamic geometry and flow field simulations. Am. J. Physiol. Heart Circ. Physiol. 284:H56–H65, 2003.
Pedrizzetti, G., and F. Domenichini. Nature optimizes the swirling flow in the human left ventricle. Phys. Rev. Lett. 95:108101, 2005.
Pedrizzetti, G., F. Domenichini, and G. Tonti. On the left ventricular vortex reversal after mitral valve replacement. Ann. Biomed. Eng. 38:769–773, 2010.
Peskin, C. S. The immersed boundary method. Acta Numer. 11:479–517, 2002.
Sengupta, P. P., G. Pedrizzetti, P. Kilner, A. Kheradvar, T. Ebbers, A. Frazer, G. Tonti, and J. Narula. Emerging trends in clinical assessment of cardiovascular fluid dynamics. J. Am. Coll. Cardiol. Cardiovasc. Imaging, 2012. doi:10.1016/j.jcmg.2012.01.003.
Smagorinsky, J. General circulation experiments with the primitive equations. Mon. Weather Rev. 91:99–164, 1963.
Stefani, L., G. Pedrizzetti, A. De Luca, R. Mercuri, G. Innocenti, and G. Galanti. Real-time evaluation of longitudinal peak systolic strain (speckle tracking measurement) in left and right ventricles of athletes. Cardiovasc. Ultrasound 7:17, 2009.
Acknowledgments
Post doctoral funding provided by the Whitaker Foundation for JOM is greatly appreciated.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Nathalie Virag oversaw the review of this article.
Rights and permissions
About this article
Cite this article
Mangual, J.O., Domenichini, F. & Pedrizzetti, G. Describing the Highly Three Dimensional Right Ventricle Flow. Ann Biomed Eng 40, 1790–1801 (2012). https://doi.org/10.1007/s10439-012-0540-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-012-0540-5