Skip to main content

Advertisement

Log in

Describing the Highly Three Dimensional Right Ventricle Flow

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Visualization of the three-dimensional flow within the Right Ventricle (RV) is a challenging issue due to the fully three-dimensional geometry of the ventricular cavity. To date proper characterization and quantification of the RV flow still remains incomplete, and techniques that can be easily applied to current medical imaging are scarce. A method for simulating the highly complex, multi directional flow within the RV is presented by coupling 4D echocardiography imaging with numerical simulations based on the Immersed Boundaries Method (IBM). A novel formulation for accurately computing the space–time distribution of the blood residence time inside the cavity is introduced. Results showed an initial compact vortex forming past the tricuspid orifice at early diastole that quickly breaks into a weakly turbulent flow pattern and rearranges, during systole, into a peculiar stream-wise vortex spinning out towards the pulmonary orifice. This arrangement is maintained when the Ejection Fraction (EF) is reduced from 58 to 32%. The average blood transit time is found to scale almost inversely proportional to the EF. A careful analysis of the residence time permitted to assess the relative significance of the different flow components (from the direct flow, with a residence time less than one heartbeat, to the residual volume, that stagnates in the ventricle) and their distribution in space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Bleasdale, R. A., and M. P. Frenneaux. Prognostic importance of right ventricular dysfunction. Heart Educ. Heart 88:323–324, 2002.

    CAS  Google Scholar 

  2. Bolger, A. F., E. Heiberg, M. Karlsson, L. Wigstrom, J. Engvall, et al. Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 9:741–747, 2007.

    Article  PubMed  Google Scholar 

  3. Carlhall, C., A. Fredriksson, J. Zajac, J. Eriksson, P. Dyverfeldt, et al. Visualization and quantification of 4D blood flow distribution and energetics in the right ventricle. J. Cardiovasc. Magn. Reson. 13:O83, 2011.

    Google Scholar 

  4. Domenichini, F. On the consistency of the direct forcing method in the fractional step solution of the Navier–Stokes equations. J. Comput. Phys. 227:6372–6384, 2008.

    Article  Google Scholar 

  5. Domenichini, F. Three-dimensional impulsive vortex formation from slender orifices. J. Fluid Mech. 666:506–520, 2011.

    Article  Google Scholar 

  6. Domenichini, F., and G. Pedrizzetti. Intraventricular vortex flow changes in the infarcted left ventricle: numerical results in an idealised 3D shape. Comput. Methods Biomech. Biomed. Eng. 14:95–101, 2011.

    Article  Google Scholar 

  7. Eriksson, J., C. Carlhall, P. Dyverfeldt, J. Engvall, A. Bolger, and T. Ebbers. Semi-automatic quantification of 4D left ventricular blood flow. J. Cardiovasc. Magn. Reson. 12:9, 2010.

    Article  PubMed  Google Scholar 

  8. Fadlun, E. A., R. Verzicco, P. Orlandi, and J. Mohd-Yusof. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161:35–60, 2000.

    Article  Google Scholar 

  9. Germano, M., U. Piomelli, P. Moin, and W. H. Cabot. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3:1760–1765, 1991.

    Article  Google Scholar 

  10. Haddad, F., S. A. Hunt, D. N. Rosenthal, and D. J. Murphy. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 117:1436–1448, 2008.

    Article  PubMed  Google Scholar 

  11. Jeong, J., and F. Hussain. On the identification of a vortex. J. Fluid Mech. 285:69–94, 1995.

    Article  Google Scholar 

  12. Kevin, L. G., and M. Barnard. Right ventricular failure. Continuing Educ. Anesth. Crit. Care Pain 7:89–94, 2007.

    Article  Google Scholar 

  13. Kheradvar, A., H. Houle, G. Pedrizzetti, G. Tonti, T. Belcik, et al. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J. Am. Soc. Echocardiogr. 23:86–94, 2010.

    Article  PubMed  Google Scholar 

  14. La Vecchia, L., L. Zanolla, L. Varotto, C. Bonanno, G. L. Spadaro, et al. Reduced right ventricular ejection fraction as a marker for idiopathic dilated cardiomyopathy compared with ischemic left ventricular dysfunction. Am. Heart J. 142:181–189, 2001.

    Article  PubMed  Google Scholar 

  15. Markl, M., P. Kilner, and T. Ebbers. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 13:7, 2011.

    Article  PubMed  Google Scholar 

  16. Mehta, S. R., J. W. Eikelboom, M. K. Natarajan, R. Diaz, C. Yi, et al. Impact of right ventricular involvement on mortality and morbidity in patients with inferior myocardial infarction. J. Am. Coll. Cardiol. 37:37–43, 2001.

    Article  PubMed  CAS  Google Scholar 

  17. Pasipoularides, A., M. Shu, A. Shah, A. Tucconi, and D. D. Glower. RV instantaneous intraventricular diastolic pressure and velocity distributions in normal and volume overload awake dog disease models. Am. J. Physiol. Heart Circ. Physiol. 285:H1956–H1965, 2003.

    PubMed  CAS  Google Scholar 

  18. Pasipoularides, A., M. Shu, A. Shah, M. S. Womack, and D. D. Glower. Diastolic right ventricular filling vortex in normal and volume overload states. Am. J. Physiol. Heart Circ. Physiol. 284:H1064–H1072, 2003.

    PubMed  CAS  Google Scholar 

  19. Pasipoularides, A. D., M. Shu, M. S. Womack, A. Shah, O. von Ramm, and D. D. Glower. RV functional imaging: 3-D echo-derived dynamic geometry and flow field simulations. Am. J. Physiol. Heart Circ. Physiol. 284:H56–H65, 2003.

    PubMed  CAS  Google Scholar 

  20. Pedrizzetti, G., and F. Domenichini. Nature optimizes the swirling flow in the human left ventricle. Phys. Rev. Lett. 95:108101, 2005.

    Article  PubMed  Google Scholar 

  21. Pedrizzetti, G., F. Domenichini, and G. Tonti. On the left ventricular vortex reversal after mitral valve replacement. Ann. Biomed. Eng. 38:769–773, 2010.

    Article  PubMed  Google Scholar 

  22. Peskin, C. S. The immersed boundary method. Acta Numer. 11:479–517, 2002.

    Article  Google Scholar 

  23. Sengupta, P. P., G. Pedrizzetti, P. Kilner, A. Kheradvar, T. Ebbers, A. Frazer, G. Tonti, and J. Narula. Emerging trends in clinical assessment of cardiovascular fluid dynamics. J. Am. Coll. Cardiol. Cardiovasc. Imaging, 2012. doi:10.1016/j.jcmg.2012.01.003.

  24. Smagorinsky, J. General circulation experiments with the primitive equations. Mon. Weather Rev. 91:99–164, 1963.

    Article  Google Scholar 

  25. Stefani, L., G. Pedrizzetti, A. De Luca, R. Mercuri, G. Innocenti, and G. Galanti. Real-time evaluation of longitudinal peak systolic strain (speckle tracking measurement) in left and right ventricles of athletes. Cardiovasc. Ultrasound 7:17, 2009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Post doctoral funding provided by the Whitaker Foundation for JOM is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Domenichini.

Additional information

Associate Editor Nathalie Virag oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangual, J.O., Domenichini, F. & Pedrizzetti, G. Describing the Highly Three Dimensional Right Ventricle Flow. Ann Biomed Eng 40, 1790–1801 (2012). https://doi.org/10.1007/s10439-012-0540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0540-5

Keywords

Navigation