Abstract
This work presents a formalization of the discrete model of the continuum introduced by Harthong (1989), the Harthong-Reeb line. This model was at the origin of important developments in the Discrete Geometry field (Reveillès and Richard, Ann. Math. Artif. Intell. Math. Inform. 16(14), 89–152 (1996)). The formalization is based on the work presented in Chollet et al. (2012, 2009) where it was shown that the Harthong-Reeb line satisfies the axioms for constructive real numbers introduced by Bridges (1999). Laugwitz-Schmieden numbers (Laugwitz 1983) are then introduced and their limitations with respect to being a model of the Harthong-Reeb line is investigated (Chollet et al., Theor. Comput. Sci. 466, 2–19 (2012)). In this paper, we transpose all these definitions and properties into a formal description using the Coq proof assistant. We also show that Laugwitz-Schmieden numbers can be used to actually compute continuous functions. We hope that this work could improve techniques for both implementing numeric computations and reasoning about them in geometric systems.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development, Coq’Art: The Calculus of Inductive Constructions. Springer, Berlin Heidelberg New York (2004)
Bridges, D., Palmgren, E.: Constructive Mathematics. The Stanford Encyclopedia of Philosophy. available from http://plato.stanford.edu/archives/win2013/entries/mathematics-constructive/ (2013)
Bridges, D., Reeves, S.: Constructive mathematics, in theory and programming practice. Technical Report CDMTCS-068, Centre for Discrete Mathematics and Theorical Computer Science (1997)
Bridges, D.S.: Constructive mathematics: A foundation for computable analysis. Theor. Comput. Sci. 219 (1–2), 95–109 (1999)
Chlipala, A.: Certified programming with dependent types: A pragmatic introduction to the coq proof assistant. MIT Press, Cambridge (2013)
Chollet, A.: Formalismes non classiques pour le traitement informatique de la topologie et de la géométrie discrète. PhD thesis, Université de la Rochelle (2010)
Chollet, A., Wallet, G., Fuchs, L., Andres, E., Largeteau-Skapin, G.: Foundational aspects of multiscale digitization. Theor. Comput. Sci. 466, 2–19 (2012)
Chollet, A., Wallet, G., Fuchs, L., Largeteau-Skapin, G., Andres, E.: Insight in discrete geometry and computational content of a discrete model of the continuum. Pattern Recog. 42, 2220–2228 (2009)
Chollet, A., Wallet, G., Fuchs, L., Largeteau-Skapin, G., Andres, E.: Ω-Arithmetization: A Discrete Multi-resolution Representation of Real Functions. In: Wiederhold, P., Barneva, P.R. (eds.) Combinatorial Image Analysis: 13th International Workshop, IWCIA of Lecture Notes in Computer Science (LNCS), vol. 5852, pp 316–329, Mexico (2009)
Coq development team: The Coq Proof Assistant Reference Manual, Version 8.2. LogiCal Project (2008)
Diener, F., Reeb, G.: Analyse non standard. Hermann, Paris (1989)
Diener, M.: Application du calcul de Harthong-Reeb aux routines graphiques. In: Salanskis, J.-M., Sinaceurs, H. (eds.) Le Labyrinthe du Continu, pp 424–435. Springer, Berlin Heidelberg New York (1992)
Fleuriot, J.: Exploring the foundations of discrete analytical geometry in Isabelle/HOL. In: Schreck, P., Richter-Gebert, J., Narboux, J. (eds.) Proceedings of Automated Deduction in Geometry 2010 of LNAI, vol. 6877. Springer, Berlin Heidelberg New York (2011)
Fleuriot, J.D., Paulson, L.C.: A combination of nonstandard analysis and geometry theorem proving, with application to newton’s principia. In: Kirchner, C., Kirchner, H. (eds.) CADE of Lecture Notes in Computer Science, vol. 1421, pp 3–16. Springer, Berlin Heidelberg New York (1998)
Geuvers, H., Niqui, M., Spitters, B., Wiedijk, F.: Constructive analysis, types and exact real numbers. Math. Struct. Comput. Sci. 17 (1), 3–36 (2007)
Harthong, J.: Une théorie du continu. In: Barreau, H., Harthong, J. (eds.) La mathématiques non standard, pp 307–329, Paris (1989). Éditions du CNRS
Huth, M., Ryan, M., 2nd ed: Logic in Computer Science. Cambridge University Press (2004)
Kaye, R.: Models of Peano Arithmetic. Oxford Science Publications (1991)
Krebbers, R., Spitters, B.: Type classes for efficient exact real arithmetic in Coq. Log. Meth. Comput. Sci. 9(1) (2011)
Laugwitz, D.: Ω-calculus as a generalization of field extension an alternative approach to nonstandard analysis. In: Hurd, A. (ed.) Nonstandard Analysis - Recent developments, volume 983 of Lecture Notes in Mathematics, pp 120–133. Springer (1983)
Laugwitz, D.: Leibniz’ principle and Ω-calculus. In: Salanskis, J., Sinacoeur, H. (eds.) Le Labyrinthe du Continu, pp 144–155. Springer, France (1992)
Laugwitz, D., Schmieden, C.: Eine erweiterung der infinitesimalrechnung. Mathematische Zeitschrift 89, 1–39 (1958)
Lutz, R.: La force modélisatrice des théories infinitésimales faibles. In: Salanskis, J.-M., Sinaceur, H. (eds.) Le Labyrinthe du Continu, pp 414–423. Springer-Verlag (1992)
Magaud, N., Chollet, A., Fuchs, L.: Formalizing a Discrete Model of the Continuum in Coq from a Discrete Geometry Perspective. In: ADG’2010 (2010). Accepted for presentation at the conference
Martin-Löf, P.: Intuitionnistic Type Theory. Bibliopolis, Napoli (1984)
Martin-Löf, P.: Mathematics of infinity. In: COLOG-88 Computer Logic, Lecture Notes in Computer Science, pp 146–197. Springer-Verlag , Berlin (1990)
Moerdijk, I.: A model for intuitionistic non-standard arithmetic. Ann. Pure Appl. Logic 73(1), 37–51 (1995)
Nelson, E.: Internal set theory: A new approach to nonstandard analysis. Bull. Am. Math. Soc. 83(6), 1165–1198 (1977)
Nelson, E.: Radically Elementary Theory. Annals of Mathematics Studies. Princeton University Press (1987)
O’Connor, R.: Certified exact transcendental real number computation in Coq. In: Mohamed, O.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs, volume 5170 of Lecture Notes in Computer Science, pp 246–261. Springer (2008)
Reveillès, J.-P., Richard, D.: Back and forth between continuous and discrete for the working computer scientist. Ann. Math. Artif. Intell., Math. Inform. 16(1–4), 89–152 (1996)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Magaud, N., Chollet, A. & Fuchs, L. Formalizing a discrete model of the continuum in Coq from a discrete geometry perspective. Ann Math Artif Intell 74, 309–332 (2015). https://doi.org/10.1007/s10472-014-9434-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10472-014-9434-6