Skip to main content
Log in

Directed Homology Theories and Eilenberg-Steenrod Axioms

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

In this paper, we define and study a homology theory, that we call “natural homology”, which associates a natural system of abelian groups to every space in a large class of directed spaces and precubical sets. We show that this homology theory enjoys many important properties, as an invariant for directed homotopy. Among its properties, we show that subdivided precubical sets have the same homology type as the original ones ; similarly, the natural homology of a precubical set is of the same type as the natural homology of its geometric realization. By same type we mean equivalent up to some form of bisimulation, that we define using the notion of open map. Last but not least, natural homology, for the class of spaces we consider, exhibits very important properties such as Hurewicz theorems, and most of Eilenberg-Steenrod axioms, in particular the dimension, homotopy, additivity and exactness axioms. This last axiom is studied in a general framework of (generalized) exact sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baues, H.-J., Wirsching, G.: Cohomology of small categories. Journal of Pure and Applied Algebra 38(2-3), 187–211 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bednarczyk, M.A., Borzyszkowski, A.M., Pawlowski, W.: Generalized congruences-epimorphisms in Cat. Theory and Applications of Categories 5(11), 266–280 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Bredon, G.: Topology and Geometry Graduate Texts in Mathematics, vol. 139. Springer, New York (1993)

    Google Scholar 

  4. Carlsson, G., Zomorodian, A.: Computing persistent homology. Discret. Comput. Geom. 33(2), 249–274 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coffman, E.G., Elphick, M.J., Shoshani, A.: System deadlocks ACM computing surveys 3(2) (1971)

  6. Dubut, J., Goubault, E., Goubault-Larrecq, J.: Natural homology. ICALP 2, 171–183 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Fahrenberg, U.: Directed homology. Electron. Notes Theor. Comput. Sci. 100, 111–125 (2004)

    Article  MATH  Google Scholar 

  8. Fajstrup, L.: Dipaths and dihomotopies in a cubical complex. Adv. Appl. Math. 35(2), 188–206 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fajstrup, L., Raussen, M., Goubault, E.: Algebraic topology and concurrency. Theor. Comput. Sci. 357(1–3), 241–278 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fajstrup, L., Goubault, E., Haucourt, E., Mimram, S., Raussen, M.: Trace spaces: an efficient new technique for state-space reduction. ESOP, 274–294 (2012)

  11. Fajstrup, L., Goubault, E., Haucourt, E., Mimram, S., Raussen, M.: Directed algebraic topology and concurrency. Springer (2016)

  12. Grandis, M.: General homological algebra, I. Semiexact and homological categories. preprint 186, Dipartimento di Matematica Università degli Studi di Genova (1991)

  13. Grandis, M.: General homological algebra, II. Homology and satellites. preprint 187, Dipartimento di Matematica Università degli Studi di Genova (1991)

  14. Grandis, M.: Inequilogical spaces, directed homology and noncommutative geometry. Homology, Homotopy and Applications 6, 413–437 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grandis, M.: Directed Algebraic Topology, Models of Non-Reversible Worlds. Cambridge University Press (2009)

  16. Goubault, E., Jensen, T.P.: Homology of higher dimensional automata. CONCUR, 254–268 (1992)

  17. Goubault, E.: Géométrie Du Parallélisme. PhD thesis, Ecole Polytechnique (1995)

  18. Guiraud, Y., Malbos, P., Mimram, S.: A homotopical completion procedure with applications to coherence of monoids. RTA, 223–238 (2013)

  19. Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Inf. Comput. 127(2), 164–185 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computing homology. Homology, Homotopy and Applications 5(2), 233–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kahl, T.: The homology graph of a higher dimensional automaton. arXiv:1307.7994 (2013)

  22. Krishnan, S.: A convenient category of locally preordered spaces. Appl. Categ. Struct. 17(5), 445–466 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Krishnan, S.: Flow-cut Dualities for Sheaves on Graphs, arXiv:1409.6712 (2014)

  24. MacLane, S.: Categories for the Working Mathematician, Graduate Text in Mathematics, vol. 5. Springer (1971)

  25. Milner, R.: Communication and Concurrency. Prentice Hall (1989)

  26. Mitchell, B.: Theory of Categories. Academic Press Inc (1995)

  27. Mitchell, B.: Rings with several objects, Advances in Mathematics (1972)

  28. Nachbin, L.: Topology and Order, volume 4 of Van Nostrand Mathematical Studies. Robert E. Krieger Publishing Company (1965)

  29. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) Theoretical Computer Science. Proceedings of the 5th GI-Conference. Lecture Notes in Computer Science 104. Springer (1981)

  30. Pratt, V.R.: Modeling concurrency with geometry. POPL, 311–322 (1991)

  31. Raussen, M.: Trace spaces in a pre-cubical complex. Topology and its Applications 156(9), 1718–1728 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Raussen, M.: Simplicial models for trace spaces. Algebraic and Geometric Topology 10(3), 1683–1714 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Raussen, M.: Simplicial models for trace spaces II: general higher dimensional automata. Algebraic and Geometric Topology 12(3), 1741–1762 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Goubault.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubut, J., Goubault, E. & Goubault-Larrecq, J. Directed Homology Theories and Eilenberg-Steenrod Axioms. Appl Categor Struct 25, 775–807 (2017). https://doi.org/10.1007/s10485-016-9438-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-016-9438-y

Keywords

Mathematics Subject Classification (2010)

Navigation