Abstract
In this paper, we propose a 3D non-rigid shape retrieval method based on canonical shape analysis. Our main idea is to transform the problem of non-rigid shape retrieval into a rigid shape retrieval problem via the well-known multidimensional scaling (MDS) approach and random walk on graphs. We first segment the non-rigid shape into local partitions based on its salient features. Then, we calculate a local MDS problem for each partition, where the local commute time distance is used as weighting function in order to preserve local shape details. Finally, we aggregate the set of local MDS problems as a global constrained problem. The constraint is formulated using the biharmonic function between local salient features. In contrast to MDS method, the proposed local MDS is computationally efficient, parameters free and gives isometry-invariant forms with minimum features distortion. Due to these advantageous properties, the proposed method achieved good retrieval accuracy on non-rigid shape benchmark datasets.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Mohamed HH, Belaid S (2015) Algorithm BOSS (bag-of-salient local spectrums) for non-rigid and partial 3D object retrieval. Neurocomputing 168:790–798
Pickup D et al (2015) SHREC’15 Track: canonical forms for non-rigid 3d shape retrieval. In: Eurographics Workshop on 3D Object Retrieval, EG 3DOR. https://doi.org/10.2312/3DOR.20151063
Mohamed W, Hamza AB (2016) Deformable 3d shape retrieval using a spectral geometric descriptor. Appl Intell 45.2:213–229
Pickup D et al (2016) Shape retrieval of non-rigid 3d human models. Int J Comput Vis 120.2:169–193
Elad A, Kimmel R (2003) On bending invariant signatures for surface. IEEE Trans Pattern Anal Mach Intell 25(10):1285–1295
Lian Z, Godil A, Xiao J (2013) Feature-preserved 3d canonical form. Int J Comput Vis 102:221–238
Pickup D, Sun X, Rosin PL, Martin RR (2015) Euclidean-distance-based canonical forms for non-rigid 3D shape retrieval. Pattern Recogn 48(8):2500–2512
Bustos B et al (2014) Coulomb shapes: using electrostatic forces for deformation-invariant shape representation. In: Proceedings of the 7th eurographics workshop on 3D Object Retrieval, pp 9–15
Mohamed HH, Belaid S, Naanaa W (2017) Local features-based 3d canonical form. In: Proceedings of the 6th international workshop on representations, analysis and recognition of shape and motion from imaging data, Tunisia 2016, appeared also in springer communications in computer and information science series, CCIS 684, pp 1–12. https://doi.org/10.1007/978-3-319-60654-51
Borg I, Groenen P (1997) Modern multidimensional scaling-theory and applications. Springer, Berlin
Faloutsos C, Lin KD (1995) A fast algorithm for indexing, data mining and visualisation of traditional and multimedia datasets. In: Proceedings of the ACM SIGMOD, pp 163–174
Aflalo Y, Kimmel R (2013) Spectral multidimensional scaling. Proc Natl Acad Sci 110(45):18052–18057
Shamai G, Zibulevsky M, Kimmel R (2015) Accelerating the computation of canonical forms for 3D nonrigid objects using multidimensional scaling. In: Proceedings of the 2015 eurographics workshop on 3d object retrieval. Eurographics association
Xu C, Wang TY, Liu YJ, Liu L, He Y (2015) Fast wavefront propagation (FWP) for computing exact geodesic distances on meshes. IEEE Trans Vis Comput Graph 21(7):822–834
Ying X, Xin S -Q (2014) He, y parallel Chen-Han (PCH) algorithm for discrete geodesics. ACM Trans Graph (TOG) 33(1):9
Pickup D et al (2016) Skeleton-based canonical forms for non-rigid 3D shape retrieval. Computational Visual Media 2.3:231–243
Rustamov RM (2007) Laplace-beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of the fifth eurographics symposium on geometry processing. Eurographics association
Kimmel R, Sethian JA (1998) Computing geodesic paths on manifolds. Proc Natl Acad Sci 95:8431–8435
Coifman RR et al (2005) Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc Natl Acad Sci U S A 102.21:7426–7431
Fouss F, Pirotte A, Renders J -M, Saerens M (2007) Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans Knowl Data Eng 19(3):355–369
Lipman Y, Rustamov RM, Funkhouser TA (2010) Biharmonic distance. ACM Trans Graph (TOG) 29(3):27
Jones PW, Maggioni M, Schul R (2008) Manifold parametrizations by eigenfunctions of the laplacian and heat kernels. Proc Natl Acad Sci 105(6):1803–1808
Qiu H, Hancock ER (2007) Clustering and embedding using commute times. IEEE Trans Pattern Anal Mach Intell 29:11
Gȩbal K, Bærentzen JA, Aanæs H, Larsen R (2009) Shape analysis using the auto diffusion function. Computer Graphics Forum 28(5):405–1413
Crane K, Weischedel C, Wardetzky M (2013) Geodesics in heat: a new approach to computing distance based on heat flow. ACM Trans Graph 32(5):152
Bronstein AM, Bronstein M, Kimmel R (2008) Numerical geometry of non-rigid shapes. Monographs in computer science. Springer
Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory IT-28:129–137
Lian Z, Godil A, Sun X, Xiao J (2013) CM-BOF: visual similarity-based 3d shape retrieval using clock matching and bag-of-features. Mach Vis Appl 24.8:1685–1704
Siddiqi K et al (2008) Retrieving articulated 3-d models using medial surfaces. Mach Vis Appl 19.4:261–275
Lian Z, Godil A, Bustos B, Daoudi M, Hermans J, Kawamura S, Kurita Y, Lavoué G, Nguyen HV, Ohbuchi R, Ohkita Y, Ohishi Y, Porikli F, Reuter M, Sipiran I, Smeets D, Suetens P, Tabia H, Vandermeulen D (2011) SHREC’11 track: shape retrieval on non-rigid 3D watertight meshes. In: Proceedings of the 4th eurographics conference on 3d object retrieval, pp 79–88
Cheng Z, Lian Z, Aono M, Hamza AB, Bronstein A, Bronstein M, Bu S, Castellani U, Cheng S, Garro V, Giachetti A, Godil A, Han J, Johan H, Lai L, Li B, Li C, Li H, Litman R, Liu X, Liu Z, Lu Y, Tatsuma A, Ye J (2014) Shape retrieval of non-rigid 3D human models. In: Proceedings of the 7th eurographics workshop on 3d object retrieval, pp 101–110
Lian Z, Zhang J, Choi S, ElNaghy H, El-Sana J, Furuya T, Giachetti A, Guler RA, Lai L, Li C, Li H, Limberger FA, Martin R, Nakanishi RU, Neto AP, Nonato LG, Ohbuchi R, Pevzner K, Pickup D, Rosin P, Sharf A, Sun L, Sun X, Tari S, Unal G, Wilson RC (2015) Non-rigid 3d shape retrieval. In: Proceedings of the 2015 eurographics workshop on 3d object retrieval, pp 107–120
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Haj Mohamed, H., Belaid, S., Naanaa, W. et al. Local commute-time guided MDS for 3D non-rigid object retrieval. Appl Intell 48, 2873–2883 (2018). https://doi.org/10.1007/s10489-017-1114-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10489-017-1114-x