Abstract
In many research and application fields, anomaly detection always is an important issue. In the article, a method of anomaly detection is presented which based on Lasso on the basis of variable linear regression solution of the Lasso problem. We transform the process of anomaly detection into a linear regression model, meanwhile, take the detection parameter as regression variables and establish the model of the regression variables and the dependent variable. Due to estimation of Lasso parameter own stable regression coefficient, can compress parameters of the model and reduce the number of parameters. Those characteristics accord with the requirement of stability, high-speed and simplicity which are needful for anomaly detection. Experimental results show that our method has higher detection accuracy and more rapid convergence ability under the constraints of the appropriate threshold.





Similar content being viewed by others
References
V, C., A, B., V, K.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)
Huang, J., Kalbarczyk, Z., Nicol, D.M.: Knowledge Discovery from Big Data for Intrusion Detection Using LDA. In: 2014 IEEE International Congress on Big Data (BigData Congress), pp. 760–761 (2014)
Li-ming, Z., Peng, Z., Wei-hong, Z., et al.: Anomaly detection in backbone networks using filter-ary-sketch. J. Commun. 32(12), 151–160 (2011)
M, X., S, H., Tian, B., et al.: Anomaly detection in wireless sensor networks: a survey. J. Netw. Comput. Appl. 34(4), 1302–1325 (2011)
Ye-Kui, Q., Ming, C., Li-Xin, Y., et al.: Network-wide anomaly detection method based on multiscale principal component analysis. J. Softw. 23(2), 361–377 (2012)
LI-Ming, Z., Peng, Z., Yan, J., et al.: How to extract and train classifier in traffic anomaly detection system. Chin. J. Comput. 35(4), 719–730 (2012)
Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S.A.: Geometric framework for unsupervised anomaly detection. Adv. Inf. Sec. 6, 77–101 (2002)
C, K., G, V., W, R.: A multi-model approach to the detection of web-based attacks. Comput. Netw. 48(5), 717–738 (2005)
J, S.S., F, A., Eskin, E., et al.: Aapplications of data mining in computer security. J. Comput. Sec. 13(4), 659–693 (2005)
R, P., Ariu, D., Fogla, P., et al.: McPAD: a multiple classifier system for accurate payload-based anomaly detection. Comput. Netw. 53(6), 864–881 (2009)
Schölkopf, B., Platt, J.C., Shawe-Taylor, J., et al.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)
J, P., D, K., Kim, J., et al.: SVDD-based pattern denoising. Neural Comput. 19(7), 1919–1938 (2007)
Tsang, C.H., Kwong, S., Wang, Hanli: Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection. Pattern Recognit. Lett. 40(9), 2373–2391 (2007)
Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)
Burbeck, K.: Current research and use of anomaly detection. In: Proceedings of the Fourteenth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 138–138 (2005)
Markou, M., Singh, S.: Novelty detection: a review—part 1: statistical approaches. Signal Process. 83(12), 2481–2497 (2003)
Bolton, P.: Banking in emerging markets. J. Financ. Intermed. 11, 11362–11365 (2002)
Tax, D.M.J.: One-Class Classification: Concept-Learning in the Absence of Counter-Examples. Delft University of Technology, Delft (2001)
Gupta, M., Sharma, A.B., Chen, H.: Context-aware time series anomaly detection for complex systems. In: Workshop Notes, vol. 14 (2013)
Feng, A., Chen, S.: Study on one-class classifiers based on Kernel method. J. NanJing Normal Univ. 8(4), 1–5 (2008)
Meinshausen, N., Yu, B.: Lasso-type recovery of sparse representations for high-dimensional data. Ann. Stat. 37(1), 246–270 (2009)
Bickel, P.J., Ritov, Y.A., Tsybakov, A.B.: Simultaneous analysis of Lasso and Dantzig selector. Ann. Stat. 37(4), 1705–1732 (2009)
Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least Angle regression. Ann. Stat. 32(2), 407–499 (2004)
Li, F., Lu, Y.-Q., Li, G.: Variable selection of the adaptive LASSO of part the linear model. Chin. J. Appl. Probab. Stat. 28(6), 614–624 (2012)
Zhang, H.H., Lu, W.: Adaptive Lasso for Cox’s proportional hazards model. Biometrika. 94(3), 691–703 (2006)
L, M., VDG, S., P, B.: The group lasso for logistic regression. J. R. Stat. Soc. 70(1), 53–71 (2008)
Fu, S.: Hierarchical Bayesian LASSO for a negative binomial regression. J. Stat. Comput. Simul. 86(11), 2182–2203 (2016)
Lu, G., Zou, J., Wang, Y.: L1-norm and maximum margin criterion based discriminant locality preserving projections via trace Lasso. Pattern Recognit. Lett. 55, 207–214 (2016)
Fosson, S., Matamoros, J., Anton-Haro, C., Magli, E.: Distributed recovery of jointly sparse signals under communication constraints. IEEE Trans. Signal Process. 64(13), 3470–3482 (2016)
Acknowledgements
This study was supported by the National Natural Science Foundation of China (61303227), Chinese Postdoctoral Science Foundation (2015M580765), ChongQing Postdoctoral Science Foundation (Xm2016041), the Fundamental Research Funds for the Central Universities (XDJK2014C039, XDJK2016C045), Doctoral Fund of Southwestern University (swu1114033), the project of Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1403106).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, S., Peng, M., Xiong, H. et al. An anomaly detection method based on Lasso. Cluster Comput 22 (Suppl 3), 5407–5419 (2019). https://doi.org/10.1007/s10586-017-1255-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-017-1255-z