Skip to main content

Advertisement

Log in

An improved cellular goore game-based consensus protocol for blockchain

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

A blockchain is a distributed network of nodes that records transactions in a digital ledger. To ensure trust in a network with untrusted nodes, blockchain uses consensus algorithms to record transactions in its ledger. Although various consensus protocols have been proposed and implemented for blockchain lately, they still have drawbacks. The last decade has seen a lot of attention and rapid growth in artificial intelligence and blockchain technologies. The performance of blockchain can be improved, and its problems can be solved by incorporating artificial intelligence. The concept of cognitive blockchain is related to AI functionalities into blockchain systems to enhance their utility and capabilities. Cellular Goore Game-based consensus was recently proposed as intelligence consensus in the cognitive blockchain. Although this consensus algorithm improves scalability, fault tolerance, and performance, it has problems, such as high communication complexity. In this paper, we proposed an improved Cellular Goore Game-based consensus protocol, which increases fault tolerance and decreases communication complexity. We also studied theoretically the Cellular Goore Game used as a distributed model in the proposed consensus and proved the convergence of CGG in the proposed protocol in this paper. We evaluated the performance of the proposed protocol by conducting several experiments. Empirical results show that this approach improves fault tolerance and communication complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Babu, E.S., Yadav, B.V.R.N., Nikhath, A.K., Nayak, S.R., Alnumay, W.: MediBlocks: secure exchanging of electronic health records (EHRs) using trust-based blockchain network with privacy concerns. Clust. Comput. 26(4), 2217–2244 (2023)

    Article  Google Scholar 

  2. Rouhani, S., Butterworth, L., Simmons, A., D., Humphery, D., G., Deters, R.: MediChain TM: a secure decentralized medical data asset management system, in 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1533–1538. (2018)

  3. Merlo, V., Pio, G., Giusto, F., Bilancia, M.: On the exploitation of the blockchain technology in the healthcare sector: a systematic review. Expert Syst. Appl. 213, 118897 (2022)

    Article  Google Scholar 

  4. Cong, L.W., He, Z.: Blockchain disruption and smart contracts. Rev. Financ. Stud. 32(5), 1754–1797 (2019)

    Article  Google Scholar 

  5. Khan, S.N., Loukil, F., Ghedira-Guegan, C., Benkhelifa, E., Bani-Hani, A.: Blockchain smart contracts: applications, challenges, and future trends. Peer-to-Peer Netw. Appl. 14, 2901–2925 (2021)

    Article  Google Scholar 

  6. Vacca, A., Di Sorbo, A., Visaggio, C.A., Canfora, G.: A systematic literature review of blockchain and smart contract development: techniques, tools, and open challenges. J. Syst. Softw. 174, 110891 (2021)

    Article  Google Scholar 

  7. Sharma, P., Wilfred Godfrey, W., Trivedi, A.: When blockchain meets IoT: a comparison of the performance of communication protocols in a decentralized identity solution for IoT using blockchain. Clust. Comput. (2022). https://doi.org/10.1007/s10586-022-03921-8

    Article  Google Scholar 

  8. Alfandi, O., Khanji, S., Ahmad, L., Khattak, A.: A survey on boosting IoT security and privacy through blockchain: exploration, requirements, and open issues. Clust. Comput. 24, 37–55 (2021)

    Article  Google Scholar 

  9. Li, H., Pei, L., Liao, D., Wang, X., Xu, D., Sun, J.: BDDT: use blockchain to facilitate IoT data transactions. Clust. Comput. 24, 459–473 (2021)

    Article  Google Scholar 

  10. Miao, J., Wang, Z., Wu, Z., Ning, X., Tiwari, P.: A blockchain-enabled privacy-preserving authentication management protocol for internet of medical things. Expert Syst. Appl. 237, 121329 (2023)

    Article  Google Scholar 

  11. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus. Rev. p. 21260. (2008). [Online]. Available: https://bitcoin.org/bitcoin.pdf.

  12. Garay,J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications, in Annual international conference on the theory and applications of cryptographic techniques, pp. 281–310. (2015)

  13. Zheng, Z., Xie, S., Dai, H.-N., Chen, X., Wang, H.: Blockchain challenges and opportunities: a survey. Int. J. Web Grid Serv. 14(4), 352–375 (2018)

    Article  Google Scholar 

  14. Zheng, Z., Xie, S., Dai, H., Chen, X., Wang H.: An overview of blockchain technology: architecture, consensus, and future trends, in 2017 IEEE international congress on big data (BigData congress), pp. 557–564. (2017)

  15. Yu, F.R., Liu, J., He, Y., Si, P., Zhang, Y.: Virtualization for distributed ledger technology (vDLT). IEEE Access 6, 25019–25028 (2018)

    Article  Google Scholar 

  16. Liu, M., Yu, F.R., Teng, Y., Leung, V.C.M., Song, M.: Performance optimization for blockchain-enabled industrial internet of things (iiot) systems: a deep reinforcement learning approach. IEEE Trans. Ind. Inform. 15(6), 3559–3570 (2019). https://doi.org/10.1109/TII.2019.2897805

    Article  Google Scholar 

  17. Liu, M., Teng, Y., Yu, F., R., Leung, V., C., M., Song, M.: Deep reinforcement learning based performance optimization in blockchain-enabled internet of vehicle, in IEEE International Conference on Communications, vol. 2019, pp. 1–6. (2019). doi: https://doi.org/10.1109/ICC.2019.8761206

  18. Bugday, A., Ozsoy, A., Öztaner, S.M., Sever, H.: Creating consensus group using online learning based reputation in blockchain networks. Pervasive Mob. Comput. 59, 101056 (2019). https://doi.org/10.1016/j.pmcj.2019.101056

    Article  Google Scholar 

  19. Pham, T., Lee, S.: Anomaly detection in bitcoin network using unsupervised learning methods. Preprint at http://arxiv.org/abs/1611.03941 (2016)

  20. Monamo, P., M., Marivate, V., Twala, B.: A multifaceted approach to Bitcoin fraud detection: Global and local outliers, in Proceedings - 2016 15th IEEE International Conference on Machine Learning and Applications, ICMLA 2016, pp. 188–194. (2017). doi: https://doi.org/10.1109/ICMLA.2016.19

  21. Monamo, P., Marivate, V., Twala, B.: Unsupervised learning for robust Bitcoin fraud detection, in 2016 Information Security for South Africa - Proceedings of the 2016 ISSA Conference, pp. 129–134. (2016). doi: https://doi.org/10.1109/ISSA.2016.7802939

  22. Sayadi, S., Ben Rejeb, S., Choukair, Z.: Anomaly detection model over blockchain electronic transactions, in 2019 15th International Wireless Communications and Mobile Computing Conference, IWCMC 2019, pp. 895–900. (2019). doi: https://doi.org/10.1109/IWCMC.2019.8766765

  23. Morishima, S.: Scalable anomaly detection method for blockchain transactions using GPU, in Proceedings - 2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies, PDCAT 2019, pp. 160–165. (2019). doi: https://doi.org/10.1109/PDCAT46702.2019.00039

  24. Salimitari, M., Joneidi, M., Chatterjee, M.: AI-enabled blockchain: An outlier-aware consensus protocol for blockchain-based iot networks, in 2019 IEEE Global Communications Conference, GLOBECOM 2019 - Proceedings, pp. 1–6. (2019).doi: https://doi.org/10.1109/GLOBECOM38437.2019.9013824

  25. Wang, W., et al.: BSIF: Blockchain-based secure, interactive, and fair mobile crowdsensing. IEEE J. Sel. Areas Commun. 40(12), 3452–3469 (2022)

    Article  Google Scholar 

  26. Jang, H., Lee, J.: An empirical study on modeling and prediction of bitcoin prices with Bayesian neural networks based on blockchain Information. IEEE Access 6, 5427–5437 (2017). https://doi.org/10.1109/ACCESS.2017.2779181

    Article  Google Scholar 

  27. Demir, A., Akilotu, B., N., Kadiroglu, Z., Sengur, A.: Bitcoin price prediction using machine learning methods, in 1st International Informatics and Software Engineering Conference: Innovative Technologies for Digital Transformation, IISEC 2019 - Proceedings, pp. 144–147. (2019). doi: https://doi.org/10.1109/UBMYK48245.2019.8965445

  28. McNally, S., Roche, J., Caton, S.: Predicting the price of bitcoin using machine learning, in Proceedings - 26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, PDP 2018, pp. 339–343. (2018). doi: https://doi.org/10.1109/PDP2018.2018.00060

  29. Li, L., Arab, A., Liu, J., Liu, J., Han, Z.: Bitcoin options pricing using LSTM-Based prediction model and blockchain statistics, in Proceedings - 2019 2nd IEEE International Conference on Blockchain, Blockchain 2019, pp. 67–74. (2019). doi: https://doi.org/10.1109/Blockchain.2019.00018

  30. Saad, M., Choi, J., Nyang, D., Kim, J., Mohaisen, A.: Toward characterizing blockchain-based cryptocurrencies for highly accurate predictions. IEEE Syst. J. 14(1), 321–332 (2020). https://doi.org/10.1109/JSYST.2019.2927707

    Article  Google Scholar 

  31. Ameri, R., Meybodi, M.: Cognitive Blockchain and Its Application to Performance Optimization in Blockchain Systems, Technical report of the Amirkabir University (2022)

  32. Ameri, R., Meybodi, M.R.: The cellular goore game-based consensus protocol: a cognitive model for blockchain consensus. Clust. Comput. (2023). https://doi.org/10.1007/s10586-023-04108-5

    Article  Google Scholar 

  33. Thathachar, M.A.L., Sastry, P.S.: Networks of learning automata: techniques for online stochastic optimization. Springer Science Business Media, Boston (2004)

    Book  Google Scholar 

  34. Akbari Torkestani, J.: An adaptive learning to rank algorithm learning automata approach. Decis. Support. Syst. 54(1), 571–583 (2012)

    Article  Google Scholar 

  35. Lee, B., H., Lee, K., Y.:Application of S-model learning automata for multi-objective optimal operation of power systems, IEEE Proceedings-Generation, Transm. Distrib. vol. 152, no. 2, pp. 295–300, (2005)

  36. Tsetlin, M.L.: Automaton theory and modeling of biological systems, vol. 102. Academic Press, New York (1973)

    Google Scholar 

  37. Narendra, K., Thathachar, M.: Learning automata: an introduction. Courier Corporation 32(6), (2012)

  38. Thathachar, M.A.L., Arvind, M.T.: Solution of Goore game using modules of stochastic learning automata. J. Ind. Inst. Sci. 77(1), 47–61 (1997)

    MathSciNet  Google Scholar 

  39. Cao, Y.U., Kahng, A.B., Fukunaga, A.S.: Cooperative mobile robotics: antecedents and directions, in robot colonies, pp. 7–27. Springer, Boston (1997)

    Google Scholar 

  40. Chen, D., Varshney, P., K.: QoS support in wireless sensor networks: a survey, in International conference on wireless networks, vol. 233, pp. 1–7. (2004)

  41. Rezvanian, A., Saghiri, A.M., Vahidipour, S.M., Esnaashari, M., Meybodi, M.R.: Recent advances in learning automata. Stud. Comput. Intell. 754, 1–458 (2018). https://doi.org/10.1007/978-3-319-72428-7

    Article  MathSciNet  Google Scholar 

  42. Norman, M.F.: On the linear model with two absorbing barriers. J. Math. Psychol. 5(2), 225–241 (1968). https://doi.org/10.1016/0022-2496(68)90073-4

    Article  MathSciNet  Google Scholar 

  43. Ameri, R., Meybodi, M.R., Daliri Khomami, M.M.: Cellular Goore Game and its application to quality-of-service control in wireless sensor networks. J. Supercomput. (2022). https://doi.org/10.1007/s11227-022-04435-1

    Article  Google Scholar 

  44. Baliga, A.: Understanding blockchain consensus models. Persistent 4, 1–14 (2017)

    Google Scholar 

  45. Seigneur, J. M.: Distributed ledger technologies (blockchain) ecosystem and decentralization. ITU Asia-Pacific Centre of Excellence Bangkok 2018 DLT Training, 3–6 (2018)

  46. Lynch, N.A.: Distributed algorithms. Elsevier, Amsterdam (1996)

    Google Scholar 

  47. Nguyen, G.T., Kim, K.: A survey about consensus algorithms used in Blockchain. J. Inf. Process. Syst. 14(1), 101–128 (2018). https://doi.org/10.3745/JIPS.01.0024

    Article  Google Scholar 

  48. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. OSDI 1999(99), 173–186 (1999)

    Google Scholar 

  49. Kwon, J.: TenderMint: Consensus without mining, the-Blockchain.Com, vol. 6, pp. 1–10, tendermint.com/docs/tendermint.pdf (2014)

  50. Lei, K., Zhang, Q., Xu, L., Qi, Z.: Reputation-based Byzantine fault-tolerance for consortium blockchain, in 2018 IEEE 24th international conference on parallel and distributed systems (ICPADS), pp. 604–611. (2018)

  51. Qin, H., Cheng, Y., Ma, X., Li, F., Abawajy, J.: Weighted Byzantine fault tolerance consensus algorithm for enhancing consortium blockchain efficiency and security. J. King Saud Univ. Inf. Sci. 34(10), 8370–8379 (2022)

    Google Scholar 

  52. Tang, S., Wang, Z., Jiang, J., Ge, S., Tan, G.: Improved PBFT algorithm for high-frequency trading scenarios of alliance blockchain. Sci. Rep. 12(1), 1–12 (2022)

    Google Scholar 

  53. He, F., Feng, W., Zhang, Y., Liu, J.: An improved Byzantine fault-tolerant algorithm based on reputation model. Electronics 12(9), 2049 (2023)

    Article  Google Scholar 

  54. Liu, X., Liu, Y., Li, X., Cao, H., Wang, Y.: FP-BFT: a fast pipeline Byzantine consensus algorithm. IET Blockchain 3, 123 (2023)

    Article  Google Scholar 

  55. Danezis, G., Kokoris-Kogias, L., Sonnino, A., Spiegelman, A.: Narwhal and tusk: a dag-based mempool and efficient bft consensus, in Proceedings of the seventeenth European Conference on Computer Systems, pp. 34–50. (2022)

  56. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery. ACM Trans. Comput. Syst. 20(4), 398–461 (2002). https://doi.org/10.1145/571637.571640

    Article  Google Scholar 

  57. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative Byzantine fault tolerance. ACM Trans. Comput. Syst. 27(4), 45–58 (2009). https://doi.org/10.1145/1658357.1658358

    Article  Google Scholar 

  58. Guerraoui, R., Knežević, N., Quéma, V., Vukolić, M.: The next 700 BFT protocols, in Proceedings of the 5th European conference on Computer systems, pp. 363–376. (2010)

  59. Chen, P., Han, D., Weng, T.-H., Li, K.-C., Castiglione, A.: A novel Byzantine fault tolerance consensus for Green IoT with intelligence based on reinforcement. J. Inf. Secur. Appl. 59, 102821 (2021)

    Google Scholar 

  60. Riahi, K., Abouaissa, A., Idoumghar, L.: A reinforcement learning-based node selection for PBFT consensus, in 2022 Ninth International Conference on Software Defined Systems (SDS), pp. 1–3. (2022)

  61. Goh, Y., Yun, J., Jung, D., Chung, J.-M.: Secure trust-based delegated consensus for blockchain frameworks using deep reinforcement learning. IEEE Access 10, 118498–118511 (2022)

    Article  Google Scholar 

  62. Alen Lovrencic, Maximally connected component. Dictionary of algorithms and data structures. https://xlinux.nist.gov/dads/HTML/maximallyConnectedComponent.html (2022) Accessed 05 Aug 2023

  63. Norman, M.F.: Some convergence theorems for stochastic learning models with distance diminishing operators. J. Math. Psychol. 5(1), 61–101 (1968)

    Article  MathSciNet  Google Scholar 

  64. Kushner, H.J.: Approximation and weak convergence methods for random processes, with applications to stochastic systems theory, vol. 6. MIT press, Cambridge (1984)

    Google Scholar 

  65. Lyapunov, A.M.: The general problem of the stability of motion. Int. J. Control. 55(3), 531–534 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Reyhaneh Ameri: Investigation, Conceptualization, Methodology, Software, Visualization, Validation, Writing—Original Draft, Mohammadreza Meybodi: Supervision, Methodology, Writing—Review & Editing,

Corresponding author

Correspondence to Reyhaneh Ameri.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Proof of Lemma 3: Let \(ES(k)=\{{{\underline{\alpha }|\underline{\alpha }=(\alpha }_{1}\left(k\right),{\alpha }_{2}\left(k\right),\dots \dots ,{\alpha }_{{N}_{P}}\left(k\right))}^{T}\}\) be the event set that evolves state \(\underline{x}\left(k\right)\). Therefore, we can express the following equation, where the definition of \({f}_{ES\left(k\right)}\) is in accordance with Eq. 14.

$$\underline{x}\left(k+1\right)={f}_{ES\left(k\right)}(\underline{x}\left(k\right))$$
(41)

Consider \(Probability\left[ES\left(k\right)=e|\underline{x}\left(k\right)=\underline{x}\right]= {\rho }_{e}(\underline{x})\), wherein \({\rho }_{e}(\underline{x})\) is a real-valued function on \(ES\times \mathcal{X}\). Let us define \(d(\underline{x},\underline{y}),m\left({\rho }_{e}\right)\) and \(\mu \left({f}_{e}\right)\) using the equations below.

$$d\left(\underline{x},\underline{y}\right)= {\sum }_{i}\left|{x}_{i}-{y}_{i}\right|$$
(42)
$$m\left( {\rho_{e} } \right) = sup_{{\underline{{x \ne x^{\prime}}} }} \frac{{\left| {\rho_{e} \left( {\underline{x} } \right) - \rho_{e} \left( {\underline{x} } \right)} \right|}}{{d\left( {\underline{x} ,\underline{{x^{\prime}}} } \right)}}$$
(43)
$$\mu \left( {f_{e} } \right) = sup_{{\underline{x} \ne \underline{{x^{\prime}}} }} \frac{{d\left( {f_{e} \left( {\underline{x} } \right) - f_{e} \left( {\underline{{x^{\prime}}} } \right)} \right)}}{{d\left( {\underline{x} ,\underline{{x^{\prime}}} } \right)}}$$
(44)

The following statements are true:

  1. 1.

    The set ES is finite.

  2. 2.

    (\(\mathcal{X},d\)) is a compact metric space.

  3. 3.

    For every \(e\in ES\), \(m\left({\rho }_{e}\right)<\infty\).

  4. 4.

    For every \(e\in ES\), \(\mu \left({f}_{e}\right) <1\). To prove this statement, suppose \(\underline{x}\) and \(\underline{y}\) as two states of the process \({\left\{\underline{x}\left(k\right)\right\}}_{k\ge 0}.\) The equation below shows that \(\mu \left({f}_{e}\right) <1\) since \({0<b}_{i}<\mathrm{1,0}<\beta (k)<1, \forall i\) from Eqs. 15 and 44.

    $$\mu \left( {f_{e} } \right) = sup_{{\underline{x} \ne \underline{{x^{\prime}}} }} \frac{{d\left( {f_{e} \left( {\underline {x} } \right) - f_{e} \left( {\underline {y} } \right)} \right)}}{{d\left( {\underline {x} ,\underline {y} } \right)}} = \frac{{\mathop \sum \nolimits_{i} \left| {f_{{e_{i} }} \left( {x_{i} } \right) - f_{{e_{i} }} \left( {y_{i} } \right)} \right|}}{{\mathop \sum \nolimits_{i} \left| {x_{i} - y_{i} } \right|}} = \frac{{\mathop \sum \nolimits_{i} \left( {1 - b_{i} \beta \left( k \right)} \right)\left| {x_{i} - y_{i} } \right|}}{{\mathop \sum \nolimits_{i} \left| {x_{i} - y_{i} } \right|}}$$
    (45)

As a result, the Markovian process provided by Eq. 14 is strictly a distance diminishing process, as defined by Norman [63] in his definition.

Proof of Corollary in lemma 3: The equation that results from Lemma 3 is as follows:

$$d\left({\underline{x}}^{c},{\underline{y}}^{c}\right)= {\sum }_{i}{(1-{b}_{i}\beta (k))}^{c}\times \left|{x}_{i}-{y}_{i}\right|$$
(46)

As \({\text{c}}\to \infty\), the right hand side of the preceding equation tends to zero. As a result, \({\underline{x}}^{c }\to {\underline{y}}^{c}\) as regardless of the initial configurations \(\underline{x}\) and \(\underline{y}.\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameri, R., Meybodi, M.R. An improved cellular goore game-based consensus protocol for blockchain. Cluster Comput 27, 6843–6868 (2024). https://doi.org/10.1007/s10586-024-04300-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-024-04300-1

Keywords

Navigation