Abstract
In this paper, we equivalently reformulate the tensor complementarity problem as a system of fixed point equations. Based on this system, we propose the (extend) randomized Kaczmarz methods for solving the tensor complementarity problem associated with nonnegative \(\mathcal {P}\)-tensors and nonsingular \(\mathcal {M}\)-tensors. We also analyze the upper bounds of the mean squared error and the estimate of the convergence rate for these two iterative methods. The computer simulation results further substantiate that the presented two randomized Kaczmarz type methods can be used to solve TCP with these two cases of tensors.


Similar content being viewed by others
References
Agaskar, A., Wang, C., Lu., Y.M.: Randomized Kaczmarz algorithms: exact MSE analysis and optimal sampling probabilities, in the Proceedings of the 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Atlanta, GA, December 3-5, pp. 389–393 (2014)
Bai, X., Huang, Z., Wang, Y.: Global uniqueness and solvability for tensor complementarity problems. J. Optim. Theory Appl. 170, 72–84 (2016)
Bai, Z., Wu, W.: On convergence rate of the randomized Kaczmarz method. Linear Algebra Appl. 553, 252–269 (2018)
Bai, Z., Wu, W.: On greedy randomized Kaczmarz method for solving large sparse linear systems. SIAM J. Sci. Comput. 40, A592–A606 (2018)
Bai, Z., Wu, W.: On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems. Appl. Math. Lett. 83, 21–26 (2018)
Bai, Z., Wu, W.: On greedy randomized coordinate descent methods for solving large linear least-squares problems. Numer. Linear Algebra Appl. 26, e2237 (2019)
Bai, Z., Wu, W.: On partially randomized extended Kaczmarz method for solving large sparse overdetermined inconsistent linear systems. Linear Algebra Appl. 578, 225–250 (2019)
Che, M., Qi, L., Wei, Y.: Positive-definite tensors to nonlinear complementarity problems. J. Optim. Theory Appl. 168, 475–487 (2016)
Che, M., Qi, L., Wei, Y.: Stochastic \({R}_0\) tensors to stochastic tensor complementarity problems. Optimi. Lett. 13, 261–279 (2019)
Chen, C., Zhang, L.: Finding nash equilibrium for a class of multi-person noncooperative games via solving tensor complementarity problem. Appl. Numer. Math. 145, 458–468 (2019)
Cottle, R.W., Pang, J., Stone, R.: The Linear Complementarity Problem. Academic Press, Boston (1992)
Dai, P.F.: A fixed point iterative method for tensor complementarity problems. J. Sci. Comput. 84, 1–20 (2020)
Ding, W., Luo, Z., Qi, L.: P-tensors, \({P}_ 0\)-tensors, and tensor complementarity problem. Linear Algebra Appl. 555, 336–354 (2018)
Ding, W., Qi, L., Wei, Y.: \(\cal{M}\)-tensors and nonsingular \(\cal{M}\)-tensors. Linear Algebra Appl. 439, 3264–3278 (2013)
Ding, W., Wei, Y.: Solving multi-linear systems with \(\cal{M}\)-tensors. J. Sci. Comput. 68, 689–715 (2016)
Du, S., Che, M., Wei, Y.: Stochastic structured tensors to stochastic complementarity problems. Comput. Optim. Appl. 75, 649–668 (2020)
Du, S., Cui, L., Chen, Y., Wei, Y.: Stochastic tensor complementarity problem with discrete distribution. J. Optim. Theory Appl. 192, 912–929 (2022)
Du, S., Ding, W., Wei, Y.: Acceptable solutions and backward errors for tensor complementarity problems. J. Optim. Theory Appl. 188, 260–276 (2021)
Du, S., Zhang, L.: A mixed integer programming approach to the tensor complementarity problem. J. Glob. Optim. 73, 789–800 (2019)
Du, S., Zhang, L., Chen, C., Qi, L.: Tensor absolute value equations. Sci. China Math. 61, 1695–1710 (2018)
Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Science & Business Media, Berlin (2007)
Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction technique (art) for three-dimensional electron microscopy and x-ray photography. J. Theor. Biol. 29, 471–481 (1971)
Gowda, M., Pang, J.S.: Stability analysis of variational inequalities and nonlinear complementarity problems, via the mixed linear complementarity problem and degree theory. Math. Operations Res. 19, 831–879 (1994)
Gowda, M.S., Luo, Z., Qi, L., Xiu, N.: \(\cal{Z}\)-tensors and complementarity problems, arXiv:1510.07933
Guan, H.B., Li, D.H.: Linearized methods for tensor complementarity problems. J. Optim. Theory Appl. 184, 972–987 (2020)
Han, L.: A homotopy method for solving multilinear systems with \(m\)-tensors. Appl. Math. Lett. 69, 49–54 (2017)
Han, L.: A continuation method for tensor complementarity problems. J. Optim. Theory Appl. 180, 949–963 (2019)
Herman, G.T., Meyer, L.B.: Algebraic reconstruction techniques can be made computationally efficient. IEEE Trans. Med. Imaging 12, 600–609 (1993)
Huang, Z.H., Qi, L.: Formulating an n-person noncooperative game as a tensor complementarity problem. Comput. Optim. Appl. 66, 557–576 (2017)
Huang, Z.H., Qi, L.: Tensor complementarity problems-part III: applications. J. Optim. Theory Appl. 183, 1–21 (2019)
Kaczmarz, S.: Angen\(\ddot{a}\)herte aufl\(\ddot{o}\)sung von systemen lenearer gleichungen. Bulletin International de lAcademie Polonaise des Sciences et des Letters. Classe des Sciences Mathematiques et Naturelles. S\(\acute{e}\)rie A, Sciences Math\(\acute{e}\)matiques, (1937), pp. 335–357
Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34, 148–172 (2013)
Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)
Lim, L.: Singular values and eigenvalues of tensors: a variational approach, in IEEE CAMSAP 2005: First International Workshop on Computational Advances in Multi-Sensor Adaptive Processing. IEEE, 129–132 (2005)
Liu, D., Li, W., Vong, S.W.: Tensor complementarity problems: the GUS-property and an algorithm. Linear Multilinear Algebra 28, 1726–1749 (2018)
Lu, N., Huang, Z.H., Han, J.: Properties of a class of nonlinear transformations over euclidean jordan algebras with applications to complementarity problems. Numer. Funct. Anal. Optim. 30, 799–821 (2009)
Luo, Z., Qi, L., Xiu, N.: The sparsest solutions to \(\cal{Z}\)-tensor complementarity problems. Optim. Lett. 11, 471–482 (2017)
Ma, A., Molitor, D.: Randomized Kaczmarz for tensor linear systems, BIT. Numer. Math. 62, 171–194 (2022)
Ma, A., Needell, D., Ramdas, A.: Convergence properties of the randomized extended Gauss-Seidel and Kaczmarz methods. SIAM J. Matrix Anal. Appl. 36, 1590–1604 (2015)
Moorman, J.D., Tu, T.K., Molitor, D., Needell, D.: Randomized Kaczmarz with averaging. BIT Numer. Math. 61, 337–359 (2021)
Natterer, F.: The Mathematics of Computerized Tomography. SIAM, Philadelphia, PA (2001)
Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput. 40, 1302–1324 (2005)
Song, Y., Qi, L.: Properties of some classes of structured tensors. J. Optim. Theory Appl. 165, 854–873 (2015)
Song, Y., Qi, L.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169, 1069–1078 (2016)
Song, Y., Qi, L.: Properties of tensor complementarity problem and some classes of structured tensors. Ann. Appl. Math. 308–323 (2017)
Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15, 262–278 (2009)
Wang, X., Che, M., Qi, L., Wei, Y.: Modified gradient dynamic approach to the tensor complementarity problem. Optim. Methods Softw. 35, 394–415 (2020)
Wang, X., Che, M., Wei, Y.: Existence and uniqueness of positive solution for \(\cal{H}^+\)-tensor equations. Appl. Math. Lett. 98, 191–198 (2019)
Wang, X., Che, M., Wei, Y.: Neural networks based approach solving multi-linear systems with \(\cal{M}\)-tensors. Neurocomputing 351, 33–42 (2019)
Wang, X., Mo, C., Che, M., Wei, Y.: Accelerated dynamical approaches for finding the unique positive solution of \(\cal{KS}\)-tensor equations. Numer. Algorithms 88, 1787–1810 (2021)
Wang, X., Mo, C., Qiao, S., Wei, Y.: Predefined-time convergent neural networks for solving the time-varying nonsingular multi-linear tensor equations. Neurcomputing 472, 68–84 (2022)
Xie, S.L., Li, D.H., Xu, H.R.: An iterative method for finding the least solution to the tensor complementarity problem. J. Optim. Theory Appl. 175, 119–136 (2017)
Xu, H., Li, D., Xie, S.: An equivalent tensor equation to the tensor complementarity problem with positive semi-definite \(\cal{Z}\)-tensor. Optim. Lett. 13, 685–694 (2019)
Yangguang, O.: The general solution for inverse problem of system of linear equation \(\mathbf{Ax}=\mathbf{b}\). Math. Theory Appl. 24, 26–28 (2004)
Yu, W., Ling, C., He, H.: On the properties of tensor complementarity problems. Pac. J. Optim. 675–691 (2018)
Acknowledgements
We thank the editor and two anonymous reviewers for their detailed and helpful comments.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Xuezhong Wang: This author is supported by the National Natural Science Foundation of China under Grant 12061032; Start-Up Fund of Doctoral Research, Hexi University. Partial work was finished when this author visited Key Laboratory of Mathematics for Nonlinear Sciences at Fudan University.
Maolin Che: This author is supported by the National Natural Science Foundation of China under Grants 12061032 and 11901471.
Yimin Wei: This author is supported by the National Natural Science Foundation of China under Grant 11771099, Innovation Program of Shanghai Municipal Education Commission and Shanghai Municipal Science and Technology Commission under Grant 22WZ2501900.
Rights and permissions
About this article
Cite this article
Wang, X., Che, M. & Wei, Y. Randomized Kaczmarz methods for tensor complementarity problems. Comput Optim Appl 82, 595–615 (2022). https://doi.org/10.1007/s10589-022-00382-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-022-00382-y
Keywords
- Tensor complementarity problem
- Nonnegative \(\mathcal {P}\)-tensors
- Nonsingular \(\mathcal {M}\)-tensors
- Randomized Kaczmarz method
- Convergence rate