Abstract
In this paper, we consider the construction of linear lexicodes over finite chain rings by using a \(B\)-ordering over these rings and a selection criterion. As examples we give lexicodes over \(\mathbb Z _4\) and \(\mathbb F _2+u\mathbb F _2\). It is shown that this construction produces many optimal codes over rings and also good binary codes. Some of these codes meet the Gilbert bound. We also obtain optimal self-dual codes, in particular the octacode.
Similar content being viewed by others
References
Aoki T., Gaborit P., Harada M., Ozeki M., Solé P.: On the covering radius of \(\mathbb{Z}_4\)-codes and their lattices. IEEE Trans. Inf. Theory 45(6), 2162–2168 (1999).
Aydin N., Asamov T.: Database for codes over \(\mathbb{Z}_4\). Available online at: http://www.asamov.com/Z4Codes/CODES/ShowCODESTablePage.aspx.
Bonn J.T.: Forcing linearity on greedy codes. Des. Codes Cryptogr. 9(1), 39–49 (1996).
Brualdi R.A., Pless V.: Greedy codes. J. Comb. Theory Ser. A 64, 10–30 (1993).
Conway J.H., Sloane N.J.A.: Lexicographic codes: error-correcting codes from game theory. IEEE Trans. Inf. Theory 32(3), 337–348 (1986).
Dougherty S.T., Gaborit P., Harada M., Solé P.: Type II codes over \(\mathbb{F}_2+u\mathbb{F}_2\). IEEE Trans. Inf. Theory, 45(1), 32–45 (1999).
Dougherty S.T., Gulliver A., Park Y.H.: Optimal linear codes over \(\mathbb{Z}_m\). J. Korean Math. Soc. 44(5), 1139–1162 (2007).
Grassl M.: Bounds on the minimum distance of linear codes and quantum codes. Available online at: http://www.codetables.de.
Greferath M., Schmidt S.E.: Gray isometries for finite chain rings and non-linear ternary \((36,3^{12},15)\). IEEE. Trans. Inf. Theory 45(7), 2522–2524 (1999).
Guenda K.: Gulliver T.A.: MDS and self-dual codes over rings. Finite Fields Appl. 18(6), 1061–1075 (2012).
Hammons A.R. Jr., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \(\mathbb{Z}_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory 40(2), 301–319 (1994).
Honold T., Nechaev A.A.: Weighted modules and representations of codes. Tech. Univ. München, Fak. Math. Report, Beitrage Zur Geometrie and Algebra 36 (1998).
Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, New York (2003).
Levenstein T.: A class of systematic codes. Soviet Math. Dokl. 1, 368–371 (1960)
van Zanten A.J.: Lexicographic order and linearity. Des. Codes Cryptogr. 10(1), 85–97 (1997).
van Zanten A.J., Nengah Suparta I.: On the construction of linear \(q\)-ary lexicodes. Des. Codes Cryptogr. 37(1), 15–29 (2005).
Acknowledgments
The authors would like to thank the reviewers for their useful comments which improved the paper considerably. In addition, we would like to thank the Editor for their careful handling of our paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by J.-L. Kim.
Rights and permissions
About this article
Cite this article
Guenda, K., Gulliver, T.A. & Sheikholeslam, S.A. Lexicodes over rings. Des. Codes Cryptogr. 72, 749–763 (2014). https://doi.org/10.1007/s10623-012-9791-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-012-9791-2