Abstract
Let \(\mathfrak {X}(\Gamma ,G)\) be the G-character variety of \(\Gamma \) where G is a rank 1 complex affine algebraic group and \(\Gamma \) is a finitely presentable discrete group. We describe an algorithm, which we implement in Mathematica, SageMath, and in Python, that takes a finite presentation for \(\Gamma \) and produces a finite presentation of the coordinate ring of \(\mathfrak {X}(\Gamma ,G)\). We also provide a new description of the defining relations and local parameters of the coordinate ring when \(\Gamma \) is free. Although the theorems used to create the algorithm are not new, we hope that as a well-referenced exposition with a companion computer program it will be useful for computation and experimentation with these moduli spaces.
Similar content being viewed by others
Notes
Available at http://math.gmu.edu/~slawton3/trace-identities.nb, http://math.gmu.edu/~slawton3/Main.sagews, and http://math.gmu.edu/~slawton3/charvars.py respectively.
Available at http://math.gmu.edu/~slawton3/trace-identities.nb.
At the time of this writing, our Python program is expected to be incorporated directly into SnapPy.
References
Ashley, C., Burelle, J.-P., Lawton. S.: Rank 1 character varieties of finitely presented groups. ArXiv e-prints, (March 2017) https://arxiv.org/abs/1703.08241
Atiyah, M.F., Bott, R.: The Yang-Mills equations over riemann surfaces. Philos. Trans. R. Soc. Lond Ser. A 308(1505), 523–615 (1983)
Aslaksen, H., Tan, E.-C., Zhu, C.-B.: Generators and relations of invariants of \(2 \times 2\) matrices. Commun. Algebra 22(5), 1821–1832 (1994)
Borel, A., Friedman, R., Morgan, J.W.: Almost commuting elements in compact Lie groups. Mem. Am. Math. Soc. 157(747), x+136 (2002)
Brumfiel, G.W., Hilden, H.M.: SL(2) Representations of Finitely Presented Groups. Contemporary Mathematics, vol. 187. American Mathematical Society, Providence (1995)
Baker, K.L., Petersen, K.L.: Character varieties of once-punctured torus bundles with tunnel number one. Int. J. Math. 24(6), 1350048 (2013)
Cooper, D., Culler, M., Gillet, H., Long, D.D., Shalen, P.B.: Plane curves associated to character varieties of \(3\)-manifolds. Invent. Math. 118(1), 47–84 (1994)
Culler, M., Dunfield, N.M., Goerner, M., Weeks, J.R.: SnapPy, a computer program for studying the geometry and topology of \(3\)-manifolds. Available at http://snappy.computop.org
Casimiro, A., Florentino, C., Lawton, S., Oliveira, A.: Topology of moduli spaces of free group representations in real reductive groups. Forum Math. 28(2), 275–294 (2016)
Culler, M., Shalen, P.B.: Varieties of group representations and splittings of \(3\)-manifolds. Ann. Math. (2) 117(1), 109–146 (1983)
Drensky, V., Formanek, E.: Polynomial Identity Rings. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser Verlag, Basel (2004)
Dolgachev, I.: Lectures on invariant theory volume 296 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2003)
Drensky, V.: Defining relations for the algebra of invariants of \(2 \times 2\) matrices. Algebr. Represent. Theory 6(2), 193–214 (2003)
Florentino, C., Lawton, S.: Topology of character varieties of Abelian groups. Topol. Appl. 173, 32–58 (2014)
Florentino, C.A.A.: Invariants of \(2 \times 2\) matrices, irreducible \((2,{\mathbb{C}})\) characters and the Magnus trace map. Geom. Dedicata 121, 167–186 (2006)
Florentino, C., Lawton, S., Ramras, D.: Homotopy groups of free group character varieties. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 17, 143–185 (2017)
González-Acuña, F., Montesinos-Amilibia, J.M.: On the character variety of group representations in \({\rm SL}(2,{ C})\) and \({\rm PSL}(2,{ C})\). Math. Z. 214(4), 627–652 (1993)
Gongopadhyay, K., Lawton, S.: Invariants of pairs in \({\rm SL}(4, \mathbb{C})\) and \({\rm SU}(3,1)\). Proc. Amer. Math. Soc. 145(11), 4703–4715 (2017). doi:10.1090/proc/13638
Gabai, D., Meyerhoff, R., Milley, P.: Mom technology and hyperbolic 3-manifolds. In: The Tradition of Ahlfors-Bers. V, volume 510 of Contemporary Mathematics, pp. 84–107. American Mathematical Society, Providence (2010)
Goldman, William M.: Geometric structures on manifolds and varieties of representations. In: Geometry of group representations (Boulder, CO, 1987), volume 74 of Contemporary Mathematics, pp. 169–198. American Mathematical Society, Providence (1988)
Goldman, WM.: Trace coordinates on Fricke spaces of some simple hyperbolic surfaces. In: Handbook of Teichmüller theory. Vol. II, volume 13 of IRMA Lectures in Matheatics and Theoretical Physics, pp. 611–684. European Mathematical Society, Zürich (2009)
Goldman, WM.: Locally homogeneous geometric manifolds. In: Proceedings of the International Congress of Mathematicians, vol. II, pp. 717–744. Hindustan Book Agency, New Delhi, (2010)
Goldman, W.M., Xia, E.Z.: Ergodicity of mapping class group actions on \({\rm SU}(2)\)-character varieties. In: Geometry, rigidity, and group actions, Chicago Lectures in Mathematics, pp. 591–608. Universty of Chicago Press, Chicago (2011)
Goldman, W.M., Xia, E.Z.: Action of the Johnson-Torelli group on representation varieties. Proc. Am. Math. Soc. 140(4), 1449–1457 (2012)
Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)
Harada, S.: Hasse-Weil zeta functions of \({\rm SL}_2\)-character varieties of closed orientable hyperbolic \(3\)-manifolds. ArXiv e-prints, (December 2015)
Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. (3) 55(1), 59–126 (1987)
Hilden, H.M., Lozano, M.T., Montesinos-Amilibia, J.M.: On the character variety of periodic knots and links. Math. Proc. Camb. Philos. Soc. 129(3), 477–490 (2000)
Heusener, M., Muñoz, V., Porti, J.: The \(SL(3,\mathbb{C})\)-character variety of the figure eight knot. Ill. J. Math. 60(1), 55–98 (2016)
Horowitz, R.D.: Characters of free groups represented in the two-dimensional special linear group. Commun. Pure Appl. Math. 25, 635–649 (1972)
Hausel, T., Thaddeus, M.: Mirror symmetry, Langlands duality, and the Hitchin system. Invent. Math. 153(1), 197–229 (2003)
Kapovich, M, Millson, JJ.: On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties. Inst. Hautes Études Sci. Publ. Math. (88):5–95 (1999), (1998)
Kapovich, M., Millson, J.J.: On representation varieties of 3-manifold groups. arXiv:1303.2347, (2013)
Kac, V.G., Smilga, A.V.: Vacuum structure in supersymmetric Yang-Mills theories with any gauge group. In: The Many Faces of the Superworld, pp. 185–234. World Scientific Publishing, River Edge (2000)
Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1(1), 1–236 (2007)
Landes, Emily: Identifying the canonical component for the Whitehead link. Math. Res. Lett. 18(4), 715–731 (2011)
Lawton, S., Casimiro, A., Florentino, C., Oliveira, A.: On the homotopy type of free group character varieties. Bol. Soc. Port. Mat., (Special Issue):53–57, (2016)
Lawton, S.: \({\rm SL}(3,\mathbb{C})\)-Character Varieties and\(\mathbb{RP}^2\)-Structures on a Trinion. Ph.D. Dissertation, University of Maryland, ProQuest, Ann Arbor (2006)
Lawton, S.: Generators, relations and symmetries in pairs of \(3\times 3\) unimodular matrices. J. Algebra 313(2), 782–801 (2007)
Lawton, S.: Minimal affine coordinates for \({\rm SL}(3,\mathbb{C})\) character varieties of free groups. J. Algebra 320(10), 3773–3810 (2008)
Lawton, S.: Algebraic independence in \({\rm SL}(3,\mathbb{C})\) character varieties of free groups. J. Algebra 324(6), 1383–1391 (2010)
Le Bruyn, L.: Trace rings of generic \(2\) by \(2\) matrices. Mem. Am. Math. Soc. 66(363), vi+100 (1987)
Lubotzky, A., Magid, A.R.: Varieties of representations of finitely generated groups. Mem. Am. Math. Soc. 58(336), xi+117 (1985)
Lawton, S., Sikora, A.S.: Varieties of characters. Algebra Represent. Thoery (2017). doi:10.1007/s10468-017-9679-y
Magnus, W.: Rings of Fricke characters and automorphism groups of free groups. Math. Z. 170(1), 91–103 (1980)
Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariant theory volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 3rd edn. Springer, Berlin (1994)
Muñoz, V.: The \({\rm SL}(2,\mathbb{C})\)-character varieties of torus knots. Rev. Mat. Complut. 22(2), 489–497 (2009)
Martín Morales, J., Oller-Marcén, A.M.: Combinatorial aspects of the character variety of a family of one-relator groups. Topol. Appl. 156(14), 2376–2389 (2009)
Macasieb, M.L., Petersen, K.L., van Luijk, R.M.: On character varieties of two-bridge knot groups. Proc. Lond. Math. Soc. (3) 103(3), 473–507 (2011)
Nagata, M.: Invariants of a group in an affine ring. J. Math. Kyoto Univ, 3:369–377, (1963/1964)
Narasimhan, M.S., Seshadri, C.S.: Holomorphic vector bundles on a compact Riemann surface. In: Differential Analysis, Bombay Colloq., 1964, pp. 249–250. Oxford University Press, London (1964)
Oller-Marcén, A.M.: The \({\rm SL}(2,\mathbb{C})\) character variety of a class of torus knots. Extr. Math. 23(2), 163–172 (2008)
Petersen, K.L.: \(A\)-polynomials of a family of two-bridge knots. N. Y. J. Math. 21, 847–881 (2015)
Procesi, C.: The invariant theory of \(n\times n\) matrices. Adv. Math. 19(3), 306–381 (1976)
Przytycki, J.H., Sikora, A.S.: On skein algebras and \({\rm Sl}_2({ C})\)-character varieties. Topology 39(1), 115–148 (2000)
Petersen, K.L., Tran, A.T.: Character varieties of double twist links. Algebr. Geom. Topol. 15(6), 3569–3598 (2015)
Qazaqzeh, K.: The character variety of a family of one-relator groups. Int. J. Math. 23(1), 1250015 (2012)
Rapinchuk, I.A.: On the character varieties of finitely generated groups. Math. Res. Lett. 22(2), 579–604 (2015)
Razmyslov, J.P.: Identities with trace in full matrix algebras over a field of characteristic zero. Izv. Akad. Nauk SSSR Ser. Mat 38, 723–756 (1974)
Rolfsen, D.: Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif (1976)
Seshadri, C.S.: Geometric reductivity over arbitrary base. Adv. Math. 26(3), 225–274 (1977)
Sibirskiĭ, K.S.: Algebraic invariants of a system of matrices. Sibirsk. Mat. Ž. 9, 152–164 (1968)
Sikora, Adam S.: \(\text{ SL }_n\)-character varieties as spaces of graphs. Trans. Am. Math. Soc. 353(7), 2773–2804 (2001). (electronic)
Sikora, A.S.: Character varieties. Trans. Am. Math. Soc. 364(10), 5173–5208 (2012)
Sikora, A.S.: Generating sets for coordinate rings of character varieties. J. Pure Appl. Algebra 217(11), 2076–2087 (2013)
Sikora, A.S.: \(G\)-character varieties for \(G=SO(n,\mathbb{C})\) and other not simply connected groups. J. Algebra 429, 324–341 (2015)
Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety. I. Inst. Hautes Études Sci. Publ. Math. 79, 47–129 (1994)
Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety. II. Inst. Hautes Études Sci. Publ. Math., (80):5–79 (1995), (1994)
Teranishi, Y.: The Hilbert series of rings of matrix concomitants. Nagoya Math. J. 111, 143–156 (1988)
Teranishi, Y.: Explicit descriptions of trace rings of generic \(2\) by \(2\) matrices. Nagoya Math. J. 121, 149–159 (1991)
Thurston, W.P.: In: Levy S. (eds.) Three-dimensional geometry and topology. Vol. 1, volume 35 of Princeton Mathematical Series, Princeton University Press, Princeton (1997)
Tran, A.T.: The universal character ring of some families of one-relator groups. Algebr. Geom. Topol. 13(4), 2317–2333 (2013)
Tran, A.T.: Character varieties of \((-2,2m+1,2n)\)-pretzel links and twisted Whitehead links. J. Knot Theory Ramif. 25(2), 1650007 (2016)
Vogt, H.: Sur les invariants fondamentaux des équations différentielles linéaires du second ordre. Ann. Sci. École Norm. Sup. 3(6), 3–71 (1889)
Weyl, H.: The classical groups. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, Their invariants and representations, Fifteenth printing, Princeton Paperbacks (1997)
Wielenberg, N.: The structure of certain subgroups of the Picard group. Math. Proc. Camb. Philos. Soc. 84(3), 427–436 (1978)
Witten, E.: Supersymmetric index in four-dimensional gauge theories. Adv. Theor. Math. Phys. 5(5), 841–907 (2001)
Wolfram Research, Inc. Mathematica 11.0
Acknowledgements
Lawton thanks Chris Manon and Bill Goldman for helpful conversations. This material is based upon work supported by the National Science Foundation (NSF) under grant number DMS 1321794; the Mathematics Research Communities (MRC) program. All three authors benefited from our time in Snowbird with the MRC (2011 and 2016) and we are very grateful for the wonderful support they provided. In particular, special thanks goes to Christine Stevens. Additionally, Lawton was supported by the Simons Foundation Collaboration grant 245642, and the NSF grant DMS 1309376. Lastly, we acknowledge support from NSF grants DMS 1107452, 1107263, 1107367 “RNMS: GEometric structures And Representation varieties" (the GEAR Network). We thank an anonymous referee for helping improve the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
To William Goldman on the occasion of his 60th birthday.
Rights and permissions
About this article
Cite this article
Ashley, C., Burelle, JP. & Lawton, S. Rank 1 character varieties of finitely presented groups. Geom Dedicata 192, 1–19 (2018). https://doi.org/10.1007/s10711-017-0281-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10711-017-0281-6