Skip to main content
Log in

Rank 1 character varieties of finitely presented groups

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Let \(\mathfrak {X}(\Gamma ,G)\) be the G-character variety of \(\Gamma \) where G is a rank 1 complex affine algebraic group and \(\Gamma \) is a finitely presentable discrete group. We describe an algorithm, which we implement in Mathematica, SageMath, and in Python, that takes a finite presentation for \(\Gamma \) and produces a finite presentation of the coordinate ring of \(\mathfrak {X}(\Gamma ,G)\). We also provide a new description of the defining relations and local parameters of the coordinate ring when \(\Gamma \) is free. Although the theorems used to create the algorithm are not new, we hope that as a well-referenced exposition with a companion computer program it will be useful for computation and experimentation with these moduli spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Available at http://math.gmu.edu/~slawton3/trace-identities.nb, http://math.gmu.edu/~slawton3/Main.sagews, and http://math.gmu.edu/~slawton3/charvars.py respectively.

  2. Available at http://math.gmu.edu/~slawton3/trace-identities.nb.

  3. At the time of this writing, our Python program is expected to be incorporated directly into SnapPy.

References

  1. Ashley, C., Burelle, J.-P., Lawton. S.: Rank 1 character varieties of finitely presented groups. ArXiv e-prints, (March 2017) https://arxiv.org/abs/1703.08241

  2. Atiyah, M.F., Bott, R.: The Yang-Mills equations over riemann surfaces. Philos. Trans. R. Soc. Lond Ser. A 308(1505), 523–615 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aslaksen, H., Tan, E.-C., Zhu, C.-B.: Generators and relations of invariants of \(2 \times 2\) matrices. Commun. Algebra 22(5), 1821–1832 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borel, A., Friedman, R., Morgan, J.W.: Almost commuting elements in compact Lie groups. Mem. Am. Math. Soc. 157(747), x+136 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Brumfiel, G.W., Hilden, H.M.: SL(2) Representations of Finitely Presented Groups. Contemporary Mathematics, vol. 187. American Mathematical Society, Providence (1995)

    MATH  Google Scholar 

  6. Baker, K.L., Petersen, K.L.: Character varieties of once-punctured torus bundles with tunnel number one. Int. J. Math. 24(6), 1350048 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cooper, D., Culler, M., Gillet, H., Long, D.D., Shalen, P.B.: Plane curves associated to character varieties of \(3\)-manifolds. Invent. Math. 118(1), 47–84 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Culler, M., Dunfield, N.M., Goerner, M., Weeks, J.R.: SnapPy, a computer program for studying the geometry and topology of \(3\)-manifolds. Available at http://snappy.computop.org

  9. Casimiro, A., Florentino, C., Lawton, S., Oliveira, A.: Topology of moduli spaces of free group representations in real reductive groups. Forum Math. 28(2), 275–294 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Culler, M., Shalen, P.B.: Varieties of group representations and splittings of \(3\)-manifolds. Ann. Math. (2) 117(1), 109–146 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Drensky, V., Formanek, E.: Polynomial Identity Rings. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser Verlag, Basel (2004)

    Book  MATH  Google Scholar 

  12. Dolgachev, I.: Lectures on invariant theory volume 296 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  13. Drensky, V.: Defining relations for the algebra of invariants of \(2 \times 2\) matrices. Algebr. Represent. Theory 6(2), 193–214 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Florentino, C., Lawton, S.: Topology of character varieties of Abelian groups. Topol. Appl. 173, 32–58 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Florentino, C.A.A.: Invariants of \(2 \times 2\) matrices, irreducible \((2,{\mathbb{C}})\) characters and the Magnus trace map. Geom. Dedicata 121, 167–186 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Florentino, C., Lawton, S., Ramras, D.: Homotopy groups of free group character varieties. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 17, 143–185 (2017)

    MathSciNet  Google Scholar 

  17. González-Acuña, F., Montesinos-Amilibia, J.M.: On the character variety of group representations in \({\rm SL}(2,{ C})\) and \({\rm PSL}(2,{ C})\). Math. Z. 214(4), 627–652 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gongopadhyay, K., Lawton, S.: Invariants of pairs in \({\rm SL}(4, \mathbb{C})\) and \({\rm SU}(3,1)\). Proc. Amer. Math. Soc. 145(11), 4703–4715 (2017). doi:10.1090/proc/13638

  19. Gabai, D., Meyerhoff, R., Milley, P.: Mom technology and hyperbolic 3-manifolds. In: The Tradition of Ahlfors-Bers. V, volume 510 of Contemporary Mathematics, pp. 84–107. American Mathematical Society, Providence (2010)

  20. Goldman, William M.: Geometric structures on manifolds and varieties of representations. In: Geometry of group representations (Boulder, CO, 1987), volume 74 of Contemporary Mathematics, pp. 169–198. American Mathematical Society, Providence (1988)

  21. Goldman, WM.: Trace coordinates on Fricke spaces of some simple hyperbolic surfaces. In: Handbook of Teichmüller theory. Vol. II, volume 13 of IRMA Lectures in Matheatics and Theoretical Physics, pp. 611–684. European Mathematical Society, Zürich (2009)

  22. Goldman, WM.: Locally homogeneous geometric manifolds. In: Proceedings of the International Congress of Mathematicians, vol. II, pp. 717–744. Hindustan Book Agency, New Delhi, (2010)

  23. Goldman, W.M., Xia, E.Z.: Ergodicity of mapping class group actions on \({\rm SU}(2)\)-character varieties. In: Geometry, rigidity, and group actions, Chicago Lectures in Mathematics, pp. 591–608. Universty of Chicago Press, Chicago (2011)

  24. Goldman, W.M., Xia, E.Z.: Action of the Johnson-Torelli group on representation varieties. Proc. Am. Math. Soc. 140(4), 1449–1457 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

    MATH  Google Scholar 

  26. Harada, S.: Hasse-Weil zeta functions of \({\rm SL}_2\)-character varieties of closed orientable hyperbolic \(3\)-manifolds. ArXiv e-prints, (December 2015)

  27. Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. (3) 55(1), 59–126 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hilden, H.M., Lozano, M.T., Montesinos-Amilibia, J.M.: On the character variety of periodic knots and links. Math. Proc. Camb. Philos. Soc. 129(3), 477–490 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Heusener, M., Muñoz, V., Porti, J.: The \(SL(3,\mathbb{C})\)-character variety of the figure eight knot. Ill. J. Math. 60(1), 55–98 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Horowitz, R.D.: Characters of free groups represented in the two-dimensional special linear group. Commun. Pure Appl. Math. 25, 635–649 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hausel, T., Thaddeus, M.: Mirror symmetry, Langlands duality, and the Hitchin system. Invent. Math. 153(1), 197–229 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kapovich, M, Millson, JJ.: On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties. Inst. Hautes Études Sci. Publ. Math. (88):5–95 (1999), (1998)

  33. Kapovich, M., Millson, J.J.: On representation varieties of 3-manifold groups. arXiv:1303.2347, (2013)

  34. Kac, V.G., Smilga, A.V.: Vacuum structure in supersymmetric Yang-Mills theories with any gauge group. In: The Many Faces of the Superworld, pp. 185–234. World Scientific Publishing, River Edge (2000)

  35. Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1(1), 1–236 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Landes, Emily: Identifying the canonical component for the Whitehead link. Math. Res. Lett. 18(4), 715–731 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lawton, S., Casimiro, A., Florentino, C., Oliveira, A.: On the homotopy type of free group character varieties. Bol. Soc. Port. Mat., (Special Issue):53–57, (2016)

  38. Lawton, S.: \({\rm SL}(3,\mathbb{C})\)-Character Varieties and\(\mathbb{RP}^2\)-Structures on a Trinion. Ph.D. Dissertation, University of Maryland, ProQuest, Ann Arbor (2006)

  39. Lawton, S.: Generators, relations and symmetries in pairs of \(3\times 3\) unimodular matrices. J. Algebra 313(2), 782–801 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lawton, S.: Minimal affine coordinates for \({\rm SL}(3,\mathbb{C})\) character varieties of free groups. J. Algebra 320(10), 3773–3810 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lawton, S.: Algebraic independence in \({\rm SL}(3,\mathbb{C})\) character varieties of free groups. J. Algebra 324(6), 1383–1391 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Le Bruyn, L.: Trace rings of generic \(2\) by \(2\) matrices. Mem. Am. Math. Soc. 66(363), vi+100 (1987)

    MathSciNet  MATH  Google Scholar 

  43. Lubotzky, A., Magid, A.R.: Varieties of representations of finitely generated groups. Mem. Am. Math. Soc. 58(336), xi+117 (1985)

    MathSciNet  MATH  Google Scholar 

  44. Lawton, S., Sikora, A.S.: Varieties of characters. Algebra Represent. Thoery (2017). doi:10.1007/s10468-017-9679-y

  45. Magnus, W.: Rings of Fricke characters and automorphism groups of free groups. Math. Z. 170(1), 91–103 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariant theory volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 3rd edn. Springer, Berlin (1994)

    Google Scholar 

  47. Muñoz, V.: The \({\rm SL}(2,\mathbb{C})\)-character varieties of torus knots. Rev. Mat. Complut. 22(2), 489–497 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Martín Morales, J., Oller-Marcén, A.M.: Combinatorial aspects of the character variety of a family of one-relator groups. Topol. Appl. 156(14), 2376–2389 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Macasieb, M.L., Petersen, K.L., van Luijk, R.M.: On character varieties of two-bridge knot groups. Proc. Lond. Math. Soc. (3) 103(3), 473–507 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Nagata, M.: Invariants of a group in an affine ring. J. Math. Kyoto Univ, 3:369–377, (1963/1964)

  51. Narasimhan, M.S., Seshadri, C.S.: Holomorphic vector bundles on a compact Riemann surface. In: Differential Analysis, Bombay Colloq., 1964, pp. 249–250. Oxford University Press, London (1964)

  52. Oller-Marcén, A.M.: The \({\rm SL}(2,\mathbb{C})\) character variety of a class of torus knots. Extr. Math. 23(2), 163–172 (2008)

    MathSciNet  MATH  Google Scholar 

  53. Petersen, K.L.: \(A\)-polynomials of a family of two-bridge knots. N. Y. J. Math. 21, 847–881 (2015)

    MathSciNet  MATH  Google Scholar 

  54. Procesi, C.: The invariant theory of \(n\times n\) matrices. Adv. Math. 19(3), 306–381 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  55. Przytycki, J.H., Sikora, A.S.: On skein algebras and \({\rm Sl}_2({ C})\)-character varieties. Topology 39(1), 115–148 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  56. Petersen, K.L., Tran, A.T.: Character varieties of double twist links. Algebr. Geom. Topol. 15(6), 3569–3598 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  57. Qazaqzeh, K.: The character variety of a family of one-relator groups. Int. J. Math. 23(1), 1250015 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  58. Rapinchuk, I.A.: On the character varieties of finitely generated groups. Math. Res. Lett. 22(2), 579–604 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  59. Razmyslov, J.P.: Identities with trace in full matrix algebras over a field of characteristic zero. Izv. Akad. Nauk SSSR Ser. Mat 38, 723–756 (1974)

    MathSciNet  Google Scholar 

  60. Rolfsen, D.: Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif (1976)

  61. Seshadri, C.S.: Geometric reductivity over arbitrary base. Adv. Math. 26(3), 225–274 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  62. Sibirskiĭ, K.S.: Algebraic invariants of a system of matrices. Sibirsk. Mat. Ž. 9, 152–164 (1968)

    MathSciNet  Google Scholar 

  63. Sikora, Adam S.: \(\text{ SL }_n\)-character varieties as spaces of graphs. Trans. Am. Math. Soc. 353(7), 2773–2804 (2001). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  64. Sikora, A.S.: Character varieties. Trans. Am. Math. Soc. 364(10), 5173–5208 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  65. Sikora, A.S.: Generating sets for coordinate rings of character varieties. J. Pure Appl. Algebra 217(11), 2076–2087 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  66. Sikora, A.S.: \(G\)-character varieties for \(G=SO(n,\mathbb{C})\) and other not simply connected groups. J. Algebra 429, 324–341 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  67. Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety. I. Inst. Hautes Études Sci. Publ. Math. 79, 47–129 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  68. Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety. II. Inst. Hautes Études Sci. Publ. Math., (80):5–79 (1995), (1994)

  69. Teranishi, Y.: The Hilbert series of rings of matrix concomitants. Nagoya Math. J. 111, 143–156 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  70. Teranishi, Y.: Explicit descriptions of trace rings of generic \(2\) by \(2\) matrices. Nagoya Math. J. 121, 149–159 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  71. Thurston, W.P.: In: Levy S. (eds.) Three-dimensional geometry and topology. Vol. 1, volume 35 of Princeton Mathematical Series, Princeton University Press, Princeton (1997)

  72. Tran, A.T.: The universal character ring of some families of one-relator groups. Algebr. Geom. Topol. 13(4), 2317–2333 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  73. Tran, A.T.: Character varieties of \((-2,2m+1,2n)\)-pretzel links and twisted Whitehead links. J. Knot Theory Ramif. 25(2), 1650007 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  74. Vogt, H.: Sur les invariants fondamentaux des équations différentielles linéaires du second ordre. Ann. Sci. École Norm. Sup. 3(6), 3–71 (1889)

    Article  MATH  Google Scholar 

  75. Weyl, H.: The classical groups. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, Their invariants and representations, Fifteenth printing, Princeton Paperbacks (1997)

  76. Wielenberg, N.: The structure of certain subgroups of the Picard group. Math. Proc. Camb. Philos. Soc. 84(3), 427–436 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  77. Witten, E.: Supersymmetric index in four-dimensional gauge theories. Adv. Theor. Math. Phys. 5(5), 841–907 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  78. Wolfram Research, Inc. Mathematica 11.0

Download references

Acknowledgements

Lawton thanks Chris Manon and Bill Goldman for helpful conversations. This material is based upon work supported by the National Science Foundation (NSF) under grant number DMS 1321794; the Mathematics Research Communities (MRC) program. All three authors benefited from our time in Snowbird with the MRC (2011 and 2016) and we are very grateful for the wonderful support they provided. In particular, special thanks goes to Christine Stevens. Additionally, Lawton was supported by the Simons Foundation Collaboration grant 245642, and the NSF grant DMS 1309376. Lastly, we acknowledge support from NSF grants DMS 1107452, 1107263, 1107367 “RNMS: GEometric structures And Representation varieties" (the GEAR Network). We thank an anonymous referee for helping improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Lawton.

Additional information

To William Goldman on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashley, C., Burelle, JP. & Lawton, S. Rank 1 character varieties of finitely presented groups. Geom Dedicata 192, 1–19 (2018). https://doi.org/10.1007/s10711-017-0281-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-017-0281-6

Keywords

Mathematics Subject Classification

Navigation