Skip to main content
Log in

Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1’s function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alitto, H. J., Moore, 4th, B. D., Rathbun, D. L., & Usrey, W. M. (2011). A comparison of visual responses in the lateral geniculate nucleus of alert and anaesthetized macaque monkeys. Journal of Physiology, 589.1, 87–99.

    Article  PubMed  CAS  Google Scholar 

  • Alitto, H. J., & Usrey, W. M. (2004). Influence of contrast on orientation and temporal frequency tuning in ferret primary visual cortex. Journal of Neurophysiology, 91, 2797–2808.

    Article  PubMed  Google Scholar 

  • Alonso, J.-M., Usrey, W. M., & Reid, R. C. (2001). Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. Journal of Neuroscience, 21, 4002–4015.

    PubMed  CAS  Google Scholar 

  • Andolina, I. M., Jones, H. E., Wang, W., & Sillito, A. M. (2007). Corticothalamic feedback enhances stimulus response precision in the visual system. Proceedings of the National Academy of Sciences, 104, 1685–1690.

    Article  CAS  Google Scholar 

  • Ben-Yishai, R., Bar-Or, R. L., & Sompolinsky, H. (1995). Theory of orientation tuning in visual cortex. Proceedings of the National Academy of Sciences, 92, 3844–3848.

    Article  CAS  Google Scholar 

  • Berry, M. J., Warland, D. K., & Meister, M. (1997). The structure and precision of retinal spike trains. Proceedings of the National Academy of Sciences, 94, 5411–5416.

    Article  CAS  Google Scholar 

  • Blakemore, C. & Vital-Durand, F. (1986). Organization and post-natal development of the monkey’s lateral geniculate nucleus. Journal of Physiology, 380, 453–491.

    PubMed  CAS  Google Scholar 

  • Braitenberg, V., & Schüz, A. (1991). Anatomy of the cortex: Statistics and geometry. Berlin: Springer.

    Google Scholar 

  • Carandini, M., Demb, J. B., Mante, V., Tolhurst, D. J., Dan, Y., Olshausen, B. A., et al. (2005). Do we know what the early visual system does? Journal of Neuroscience, 25, 10577–10597.

    Article  PubMed  CAS  Google Scholar 

  • Casti, A., Hayot, F., Xiao, Y., & Kaplan, E. (2008). A simple model of retina-LGN transmission. Journal of Computational Neuroscience, 24, 235–252.

    Article  PubMed  Google Scholar 

  • Churchland, M. M., Yu, B. M., Cunningham, J. P., Sugrue, L. P., Cohen, M. R., et al. (2010). Stimulus onset quenches neural variability: A widespread cortical phenomenon. Nature Neuroscience, 13, 369–378.

    Article  PubMed  CAS  Google Scholar 

  • De Valois, R. L., & De Valois, K. K. (1990). Spatial vision. New York: Oxford University Press.

    Google Scholar 

  • Derrington, A. M., & Lennie, P. (1984). Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. Journal of Physiology, 357, 219–240.

    PubMed  CAS  Google Scholar 

  • Edwards, D. P., Purpura, K. P., & Kaplan, E. (1995). Contrast sensitivity and spatial frequency response of primate cortical neurons in and around the cytochrome oxidase blobs. Vision Research, 35, 1501–1523.

    Article  PubMed  CAS  Google Scholar 

  • Finn, I. M., Priebe, N. J., & Ferster, D. (2007). The emergence of contrast-invariant orientation tuning in simple cells of cat visual cortex. Neuron, 54, 137–152.

    Article  PubMed  CAS  Google Scholar 

  • Gegenfurtner, K. R., Kiper, D. C., & Fenstemaker, S. B. (1996). Processing of color, form, and motion in macaque area V2. Visual Neuroscience, 13, 161–172.

    Article  PubMed  CAS  Google Scholar 

  • Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley.

    Google Scholar 

  • Hansel, D., & van Vreeswijk, C. (2002). How noise contributes to contrast invariance of orientation tuning in cat visual cortex. Journal of Neuroscience, 22, 5118–5128.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 160, 106–154.

    PubMed  CAS  Google Scholar 

  • Irvin, G. E., Casagrande, V. A., & Norton, T. T. (1993). Center/surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus. Visual Neuroscience, 10, 363–373.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E. N., Hawken, M. J., & Shapley, R. (2008). The orientation selectivity of color-responsive neurons in macaque V1. Journal of Neuroscience, 28, 8096–8106.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, E., Purpura, K., & Shapley, R. M. (1987). Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. Journal of Physiology, 391, 267–288.

    PubMed  CAS  Google Scholar 

  • Kaplan, E., & Shapley, R. M. (1982). X and Y cells in the lateral geniculate nucleus of macaque monkeys. Journal of Physiology, 330, 125–143.

    PubMed  CAS  Google Scholar 

  • Kara, P., Reinagel, P., & Reid, R. C. (2000). Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron, 27, 635–646.

    Article  PubMed  CAS  Google Scholar 

  • Keat, J., Reinagel, P., Reid, R. C., & Meister, M. (2001). Predicting every spike: A model for the responses of visual neurons. Neuron, 30, 803–817.

    Article  PubMed  CAS  Google Scholar 

  • Knight, B. W. (1972). Dynamics of encoding in a population of neurons. Journal of General Physiology, 59, 734–766.

    Article  PubMed  CAS  Google Scholar 

  • Koelling, M., Shapley, R., & Shelley, M. (2008). Retinal and cortical nonlinearities combine to produce masking in V1 responses to plaids. Journal of Computational Neuroscience, 25, 390–400.

    Article  PubMed  Google Scholar 

  • Maimon, G., & Assad, J. A. (2009). Beyond Poisson: Increased spike-time regularity across primate parietal cortex. Neuron, 62, 426–440.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, D., Shapley, R., Shelley, M., & Wielaard, D. J. (2000). A neuronal network model of macaque primary visual cortex (V1): Orientation selectivity and dynamics in the input layer 4Cα. Proceedings of the National Academy of Sciences, 97, 8087–8092.

    Article  CAS  Google Scholar 

  • Miura, K., Tsubo, Y., Okada, M., & Fukai, T. (2007). Balanced excitatory and inhibitory inputs to cortical neurons decouple firing irregularity from rate modulations. Journal of Neuroscience, 27, 13802–13812.

    Article  PubMed  CAS  Google Scholar 

  • Monier, C., Chavane, F., Baudot, P., Graham, L. J., & Frégnac, Y. (2003). Orientation and direction selectivity of synaptic inputs in visual cortical neurons: A diversity of combinations produces spike tuning. Neuron, 37, 663–680.

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee, P., & Kaplan, E. (1998). The maintained discharge of neurons in the cat lateral geniculate nucleus: Spectral analysis and computational modeling. Visual Neuroscience, 15, 529–539.

    Article  PubMed  CAS  Google Scholar 

  • Peters, A., Payne, B. R., & Budd, J. (1994). A numerical analysis of the geniculocortical input to striate cortex in the monkey. Cerebral Cortex, 4, 215–219.

    Article  PubMed  CAS  Google Scholar 

  • Reich, D. S., Victor, J. D., & Knight, B. W. (1998). The power ratio and the interval map: Spiking models and extracellular recordings. Journal of Neuroscience, 18, 10090–10104.

    PubMed  CAS  Google Scholar 

  • Reich, D. S., Victor, J. D., Knight, B. W., Ozaki, T., & Kaplan, E. (1997). Response variability and timing precision of neuronal spike trains in vivo. Journal of Neurophysiology, 77, 2836–2841.

    PubMed  CAS  Google Scholar 

  • Reid, R. C., & Alonso, J.-M. (1995). Specificity of monosynaptic connections from thalamus to visual cortex. Nature, 378, 281–284.

    Article  PubMed  CAS  Google Scholar 

  • Ringach, D. L. (2002). Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. Journal of Neurophysiology, 88, 455–463.

    PubMed  Google Scholar 

  • Sclar, G., & Freeman, R. D. (1982). Orientation selectivity in the cat’s striate cortex is invariant with stimulus contrast. Experimental Brain Research, 46, 457–461.

    Article  CAS  Google Scholar 

  • Sclar, G., Maunsell, J. H. R., & Lennie, P. (1990). Coding of image contrast in central visual pathways of the macaque monkey. Vision Research, 30, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Seriès, P., Latham, P. E., & Pouget, A. (2004). Tuning curve sharpening for orientation selectivity: Coding efficiency and the impact of correlations. Nature Neuroscience, 7, 1129–1135.

    Article  PubMed  Google Scholar 

  • Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. Journal of Neuroscience, 18, 3870–3896.

    PubMed  CAS  Google Scholar 

  • Shelley, M. J., & Tao, L. (2001). Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. Journal of Computational Neuroscience, 11, 111–119.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, S. M. (2005). Thalamic relays and cortical functioning. Progress in Brain Research, 149, 107–126.

    Article  PubMed  Google Scholar 

  • Sherman, S. M., & Koch, C. (1986). The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Experimental Brain Research, 63, 1–20.

    Article  CAS  Google Scholar 

  • Sincich, L. C., Horton, J. C., & Sharpee, T. O. (2009). Preserving information in neural transmission. Journal of Neuroscience, 29, 6207–6216.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G. D., Cox, C. L., Sherman, S. M., & Rinzel, J. (2000). Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. Journal of Neurophysiology, 83, 588–610.

    PubMed  CAS  Google Scholar 

  • Somers, D. C., Nelson, S. B., & Sur, M. (1995). An emergent model of orientation selectivity in cat visual cortical simple cells. Journal of Neuroscience, 15, 5448–5465.

    PubMed  CAS  Google Scholar 

  • Sompolinsky, H., & Shapley, R. (1997). New perspectives on the mechanisms for orientation selectivity. Current Opinion in Neurobiology, 7, 514–522.

    Article  PubMed  CAS  Google Scholar 

  • Tao, L., Shelley, M., McLaughlin, D., & Shapley, R. (2004). An egalitarian network model for the emergence of simple and complex cells in visual cortex. Proceedings of the National Academy of Sciences, 101, 366–371.

    Article  CAS  Google Scholar 

  • Teich, A. F., & Qian, N. (2006). Comparison among some models of orientation selectivity. Journal of Neurophysiology, 96, 404–419.

    Article  PubMed  Google Scholar 

  • Troyer, T. W., Krukowski, A. E., Priebe, N. J., & Miller, K. D. (1998). Contrast-invariant orientation tuning in cat visual cortex: Thalamocortical input tuning and correlation-based intracortical connectivity. Journal of Neuroscience, 18, 5908–5927.

    PubMed  CAS  Google Scholar 

  • Victor, J. D., Blessing, E. M., Forte, J. D., Buzás, P., & Martin, P. R. (2007). Response variability of marmoset parvocellular neurons. Journal of Physiology, 579.1, 29–51.

    Article  Google Scholar 

  • White, E. L. (1989). Cortical circuits: Synaptic organization of the cerebral cortex. Structure, function and theory. Boston: Birkhäuser.

    Google Scholar 

  • Wielaard, D. J., Shelley, M., McLaughlin, D., & Shapley, R. (2001). How simple cells are made in a nonlinear network model of the visual cortex. Journal of Neuroscience, 21, 5203–5211.

    PubMed  CAS  Google Scholar 

  • Xing, D., Ringach, D. L., Hawken, M. J., & Shapley, R. M. (2011). Untuned suppression makes a major contribution to the enhancement of orientation selectivity in macaque V1. Journal of Neuroscience, 31, 15972–15982.

    Article  PubMed  CAS  Google Scholar 

  • Xing, D., Shapley, R. M., Hawken, M. J., & Ringach, D. L. (2005). Effect of stimulus size on the dynamics of orientation selectivity in macaque V1. Journal of Neurophysiology, 94, 799–812.

    Article  PubMed  Google Scholar 

  • Zhu, W., Shelley, M., & Shapley, R. (2009). A neuronal network model of primary visual cortex explains spatial frequency selectivity. Journal of Computational Neuroscience, 26, 271–287.

    Article  PubMed  Google Scholar 

  • Zhu, W., Xing, D., Shelley, M., & Shapley, R. (2010). Correlation between spatial frequency and orientation selectivity in V1 cortex: Implications of a network model. Vision Research, 50, 2261–2273.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Kaplan and J. Wielaard for helpful comments on the manuscript. This work was supported by grants from the National Institutes of Health and National Science Foundation and by fellowships from the Swartz Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I-Chun Lin.

Additional information

Action Editor: Alain Destexhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, IC., Xing, D. & Shapley, R. Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity. J Comput Neurosci 33, 559–572 (2012). https://doi.org/10.1007/s10827-012-0401-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-012-0401-0

Keywords

Navigation