Abstract
In this article, we propose a class of piecewise-smooth image segmentation models in a variational framework. The models involve \(L^1\) data fidelity measures and assume that an image can be approximated by the sum of a piecewise-constant function and a smooth function. The smooth function models intensity inhomogeneity, and the \(L^1\) data-fitting terms enable to segment images with low contrast or outliers such as impulsive noise. The regions to be segmented are represented as smooth functions, almost binary functions, instead of the Heaviside expression of level set functions. The existence of minimizers of our main model is shown. Furthermore, we design fast and efficient optimization algorithms based on the augmented Lagrangian method and present a partial convergence result. Numerical results validate the effectiveness of the proposed models compared with other state-of-the-art methods.












Similar content being viewed by others
References
Alliney, S.: A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Trans. Signal Process. 45(5), 913–917 (1997)
Bae, E., Yuan, J., Tai, X.C.: Global minimization for continuous multiphase partitioning problems using a dual approach. Int. J. Comput. Vis. 92(1), 112–129 (2009)
Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press Series. Artificial Intelligence. MIT Press, Cambridge (1987)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2010)
Bresson, X., Esedoḡlu, S., Vandergheynst, P., Thiran, J., Osher, S.: Fast global minimization of the active contour/snake models. J. Math. Imaging Vis. 28(2), 151–167 (2007)
Brown, E., Chan, T., Bresson, X.: A convex approach for multi-phase piecewise constant Mumford–Shah image segmentation. UCLA CAM report 09-66 (2009)
Brox, T., Cremers, D.: On the statistical interpretation of the piecewise smooth Mumford–Shah functional. In: Scale Space and Variational Methods in Computer Vision. LNCS: 4485, pp. 203–213. Springer, Berlin (2007)
Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging. Vis. 20(1), 89–97 (2004)
Chan, T., Esedoḡlu, S.: Aspects of total varation regularized \(L^1\) function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005)
Chan, T., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)
Chan, T., Sandberg, B., Vese, L.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11(2), 130–141 (2000)
Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)
Darbon, J.: A note on the discrete binary Mumford–Shah model. Computer Vision/Computer Graphics Collaboration Techniques. LNCS: 4418, pp. 283–294 (2007)
Douglas, J., Rachford, H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82(3), 421–439 (1956)
Eckstein, J., Bertsekas, D.: On the douglasrachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 5, 293–318 (1992)
Esser, E.: Applications of Lagrangian-based alternating direction methods and connections to split-Bregman. UCLA CAM report 09–31 (2009)
Evans, L., Gariepy, R.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Roca Baton (1992)
Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary Value Problems, Studies in Applied Mathematics. North Holland, Amsterdam, chapter 9, pp. 299–331 (1983)
Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split Bregman method: segmentation and surface reconstruction. J. Sci. Comput. 45(1–3), 272–293 (2010)
Goldstein, T., Osher, S.: The split Bregman method for \(L^1\)-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)
Gu, Y., Wang, L.L., Xiong, W., Cheng, J., Huang, W., Zhou, J.: Efficient and robust image segmentation with a new piecewise-smooth decomposition model. In: Proceedings of IEEE International Conference on Image Processing, pp. 2718–2722 (2013)
Jung, M., Kang, M.: Efficient nonsmooth nonconvex optimization for image restoration and segmentation. J. Sci. Comput. 62(2), 336–370 (2015)
Jung, M., Kang, M., Kang, M.: Variational image segmentation models involving non-smooth data-fidelity terms. J. Sci. Comput. 59(2), 277–308 (2014)
Jung, M., Peyre, G., Cohen, L.: Nonlocal active contours. SIAM J. Imaging Sci. 5(3), 1022–1054 (2012)
Le, T., Vese, L.: Additive and multiplicative piecewise-smooth segmentation models in a functional variational approach. Interpolat. Theory Appl. Comtemp. Math. 445, 207–224 (2007)
Lee, Y.T., Le, T.: Active contour without edges for multiphase segmentations with the presence of poisson noise. UCLA CAM report 11-46 (2011)
Lellmann, J., Schnörr, C.: Continuous multiclass labeling approaches and algorithms. SIAM J. Imaging Sci. 4, 1049–1096 (2011)
Li, C., Kao, C., Gore, J., Ding, Z.: Implicit active contours driven by local binary fitting energy. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7 (2007)
Li, F., Ng, M., Li, C.: Variational fuzzy Mumford–Shah model for image segmentation. SIAM J. Appl. Math. 70(7), 2750–2770 (2010)
Li, F., Osher, S., Qin, J., Yan, M.: Multiphase image segmentation based on fuzzy membership functions and \(l^1\)-norm fidelity. J. Sci. Comput. (2015). doi:10.1007/s10915-016-0183-z
Li, F., Shen, C., Li, C.: Multiphase soft segmentation with total variation and \(H^1\) regularization. J. Math. Imaging Vis. 37, 98–111 (2010)
Lions, P., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)
Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)
Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms. SIAM J. Numer. Anal. 40(3), 965–994 (2002)
Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1–2), 99–120 (2004)
Nikolova, M.: Weakly constrained minimization. Application to the estimation of images and signals involving constant regions. J. Math. Imaging Vis. 21(2), 155–175 (2004)
Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for the total variation based image restoration. Multi Model Simul. 4, 460–489 (2005)
Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)
Paragios, N., Deriche, R.: Geodesic active regions: a new framework to deal with frame partition problems in computer vision. J. Vis. Commun. Image Represent. 13, 249–268 (2002)
Piovano, J., Rousson, M., Papadopoulo, T.: Efficient segmentation of piecewise smooth images. In: Scale Space and Variational Methods in Computer Vision. LNCS: 4485. Springer, Berlin, pp. 709–720 (2007)
Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex approach for computing minimal partitions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 810–817 (2009)
Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1–4), 259–268 (1992)
Samson, C., Blanc-Feraud, L., Aubert, G., Zerubia, J.: A variational model for image classification and restoration. IEEE Trans. Pattern Anal. Mach. Intell. 22(5), 460–472 (2000)
Setzer, S.: Operator splittings, Bregman methods and frame shrinkage in image processing. Int. J. Comput. Vis. 92(3), 265–280 (2011)
Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)
Wang, L., He, L., Mishra, A., Li, C.: Active contours driven by local Gaussian distribution fitting energy. Signal Process. 89, 2435–2447 (2009)
Wang, X., Huang, D., Xu, H.: An efficient local Chan–Vese model for image segmentation. Pattern Recognit. 43(3), 603–618 (2010)
Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)
Yang, Y., Wu, B.: A new and fast multiphase image segmentation model for color images. Math. Probl. Eng. 2012(2012) (2012). doi:10.1155/2012/494761
Yezzi, A., Tsai, A., Willsky, A.: A statistical approach to snakes for bimodal and trimodal imagery. Proc. IEEE Int. Conf. Comput. Vis. II, 898–903 (1999)
Yezzi, A., Tsai, A., Willsky, A.: Curve evolution implementation of the Mumford–Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10(8), 1169–1186 (2001)
Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for \(L^1\)-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)
Zach, C., Gallup, D., Frahm, J., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In: 13th International Fall Workshop Vision, Modeling, and Visualization, pp. 243–252 (2008)
Zhang, R., Bresson, X., Chan, T., Tai, X.: Four color theorom and convex relaxation for image segmentation with any number of regions. Inverse Probl. Imaging 21(12), 4722–4734 (2012). doi:10.3934/ipi.2013.7.1099
Zhang, Y.: An alternating direction algorithm for nonnegative matrix factorization. CAAM technical report (2010)
Zhao, H.K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127(31), 179–195 (1996)
Acknowledgments
Miyoun Jung was supported by the Hankuk University of Foreign Studies Research Fund.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jung, M. Piecewise-Smooth Image Segmentation Models with \(L^1\) Data-Fidelity Terms. J Sci Comput 70, 1229–1261 (2017). https://doi.org/10.1007/s10915-016-0280-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-016-0280-z