Abstract
In this paper, we investigate the Arnoldi method of the right eigenvalue problem of the large-scale quaternion matrices. We use the real structure-preserving rather than the quaternion or the real structure, which has limitations in dealing with large quaternion matrices, to construct algorithms. The basic quaternion Arnoldi method is proposed to get the partial Schur decomposition of the quaternion matrices. Then, we give a novel algorithm for calculating the right eigenvectors of a quaternion Schur form. Furthermore, an explicitly restarted quaternion Arnoldi method (ERQAM) is presented to solve the right eigenpairs of the quaternion matrices. Finally, we provide five numerical examples which show the efficiency and accuracy of the proposed algorithms, and illustrate that the performance of ERQAM for large low rank quaternion matrices is better than that of the already known and brand-new methods.





Similar content being viewed by others
References
Zhang, F.Z.: Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21–57 (1997)
Jiang, T.S., Chen, L.: An algebraic method for Schrödinger equations in quaternionic quantum mechanics. Comput. Phys. Commun. 178(11), 795–799 (2008)
De Leo, S., Scolarici, G.: Right eigenvalue equation in quaternionic quantum mechanics. J. Phys. A Math. Gen. 33(15), 2971 (2000)
Wang, Q.W., He, Z.H., Zhang, Y.: Constrained two-sided coupled Sylvester-type quaternion matrix equations. Automatica 101, 207–213 (2019)
He, Z.H., Wang, Q.W.: A real quaternion matrix equation with applications. Linear Multilinear Algebra 61(6), 725–740 (2013)
Le Bihan, N., Sangwine, S.J.: Quaternion principal component analysis of color images. In: ICIP, vol. 1, p. I-809 (2003)
Farenick, D.R., Pidkowich, B.A.: The spectral theorem in quaternions. Linear Algebra Appl. 371, 75–102 (2003)
Bunse-Gerstner, A., Byers, R., Mehrmann, V.: A quaternion QR algorithm. Numer. Math. 55(1), 83–95 (1989)
Jia, Z.G., Wei, M.S., Ling, S.T.: A new structure-preserving method for quaternion Hermitian eigenvalue problems. J. Comput. Appl. Math. 239, 12–14 (2013)
Jia, Z.G., Wei, M.S., Zhao, M.X., Chen, Y.: A new real structure-preserving quaternion QR algorithm. J. Comput. Appl. Math. 343, 26–48 (2018)
Li, Y., Wei, M.S., Zhang, F.X., Zhao, J.L.: On the power method for quaternion right eigenvalue problem. J. Comput. Appl. Math. 345, 59–69 (2019)
Ma, R.R., Jia, Z.G., Bai, Z.J.: A structure-preserving Jacobi algorithm for quaternion Hermitian eigenvalue problems. Comput. Math. Appl. 75(3), 809–820 (2018)
Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q. Appl. Math. 9(1), 17–29 (1951)
Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix. Anal. A 13(1), 357–385 (1992)
Morgan, R.: On restarting the Arnoldi method for large nonsymmetric eigenvalue problems. Math. Comput. AMS 65(215), 1213–1230 (1996)
Greenbaum, A., Trefethen, L.N.: GMRES/CR and Arnoldi/Lanczos as matrix approximation problems. SIAM J. Sci. Comput. 15(2), 359–368 (1994)
Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Manchester University Press, Manchester (1992)
Rodman, L.: Topics in Quaternion Linear Algebra. Princeton University Press, Princeton (2014)
Brenner, J.L.: Matrices of quaternions. Pac. J. Math. 1(3), 329–335 (1951)
Jia, Z.X., Stewart, G.: An analysis of the Rayleigh–Ritz method for approximating eigenspaces. Math. Comput. 70(234), 637–647 (2001)
Giraud, L., Langou, J., Rozloznik, M.: The loss of orthogonality in the Gram–Schmidt orthogonalization process. Comput. Math. Appl. 50(7), 1069–1075 (2005)
Emad, N., Petiton, S., Edjlali, G.: Multiple explicitly restarted Arnoldi method for solving large eigenproblems. SIAM J. Sci. Comput. 27(1), 253–277 (2005)
Nishida, A.: Least squares Arnoldi for large nonsymmetric eigenproblems. In: Proceedings of the 5th Copper Mountain Conference on Iterative Methods, vol. 2 (1998)
Chen, Y.: Structure-preserving QR algorithm of general quaternion eigenvalue problem with application to color watermarking. Jiangsu Normal University (2018)
Stewart, G.W.: A Krylov Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23, 601–614 (2001)
Jia, Z.G, Ng, M. K., Song, G.J.: Lanczos method for large-scale quaternion singular value decomposition. Numer. Algorithms (2018). https://doi.org/10.1007/s11075-018-0621-0
Lehoucq, R.B.: Analysis and Implementation of an Implicitly Restarted Arnoldi Iteration. Rice University (1995)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Signal Process. 13(4), 600–612 (2004)
Subakan, Ö.N., Vemuri, B.C.: A quaternion framework for color image smoothing and segmentation. Int. J. Comput. Vision. 91(3), 233–250 (2011)
Li, Y., Wei, M.S., Zhang, F.X., Zhao, J.L.: A fast structure-preserving method for computing the singular value decomposition of quaternion matrix. Appl. Math Comput. 235, 157–167 (2014)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work is supported by the National Natural Science Foundation of China (11971294).
Appendix A: Proof of Theorem 3.1
Appendix A: Proof of Theorem 3.1
Let \(\{\mathbf {q}_1,\ldots ,\mathbf {q}_j\}\) be the orthonormal basis of the Krylov subspace \(\mathcal {K}_j(A,\mathbf {v})\), (\(j \le s\)). If \(A^{j} \mathbf {v}\notin \mathcal {K}_j(A,\mathbf {v})\), then the vector \(\mathbf {q}_{j+1}\) can be constructed by the Gram−Schmidt algorithm,
where \(\{\mathbf {q}_1,\ldots , \mathbf {q}_j,\mathbf {q}_{j+1}\}\) is a standard orthogonal basis of \(\mathcal {K}_{j+1}(A,\mathbf {v})\). Let \(\mathbf {q}_1=\mathbf {v}/\Vert \mathbf {v}\Vert _{\mathbb {H}}\) and \(A\mathbf {q}_1=\mathbf {q}_1 d_1+\mathbf {q}_2 d_2, d_1, d_2 \in \mathbb {H}\). Then
We replace \(A^j \mathbf {v}\) with \(A\mathbf {q}_j\) in the Gram−Schmidt orthogonalization process, and
Since s is the minimum positive integer, and \(\mathcal {K}_s(A,\mathbf {v})=\mathcal {K}_m(A,\mathbf {v})\) for every \(m\ge s\). We have
When \(j<s\), we can continue to extend the standard orthogonal basis by the following formula,
It follows from \(\mathbf {q}_{j+1} \perp \text {span}_{\mathbb {H}}\{\mathbf {q}_1,\ldots ,\mathbf {q}_j\}\) that
and
implying
where \(h_{ij}=\langle \mathbf {q}_i, A\mathbf {q}_j\rangle \)\( (1\le i \le j+1)\) and \(h_{j+1,j}=\Vert \mathbf {u}_j\Vert _{\mathbb {H}} \in \mathbb {R}\). Then
and,
where \( Q_{k}^{*}Q_k=I_k\), and
Rights and permissions
About this article
Cite this article
Wang, QW., Wang, XX. Arnoldi Method for Large Quaternion Right Eigenvalue Problem. J Sci Comput 82, 58 (2020). https://doi.org/10.1007/s10915-020-01158-4
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-020-01158-4