Skip to main content
Log in

Padé-type Approximations to the Resolvent of Fractional Powers of Operators

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We study a reliable pole selection for the rational approximation of the resolvent of fractional powers of operators in both the finite and infinite dimensional setting. The analysis exploits the representation in terms of hypergeometric functions of the error of the Padé approximation of the fractional power. We provide quantitatively accurate error estimates that can be used fruitfully for practical computations. We present some numerical examples to corroborate the theoretical results. The behavior of rational Krylov methods based on this theory is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aceto, L., Novati, P.: Rational approximation to fractional powers of self-adjoint positive operators. Numer. Math. 143(1), 1–16 (2019)

    Article  MathSciNet  Google Scholar 

  2. Aceto, L., Novati, P.: Rational approximation to the fractional Laplacian operator in reaction–diffusion problems. SIAM J. Sci. Comput. 39, A214–A228 (2017)

    Article  MathSciNet  Google Scholar 

  3. Aceto, L., Novati, P.: Efficient implementation of rational approximations to fractional differential operators. J. Sci. Comput. 76, 651–671 (2018)

    Article  MathSciNet  Google Scholar 

  4. Aceto, L., Bertaccini, D., Durastante, F., Novati, P.: Rational Krylov methods for functions of matrices with applications to fractional partial differential equations. J. Comput. Phys. 396(1), 470–482 (2019)

    Article  MathSciNet  Google Scholar 

  5. Beckermann, B., Reichel, L.: Error estimates and evaluation of matrix functions via the Faber transform. SIAM J. Numer. Anal. 47(5), 3849–3883 (2009)

    Article  MathSciNet  Google Scholar 

  6. Beyer, H.R.: Beyond Partial Differential Equations, LNM 1898. Springer, Berlin (2007)

    Google Scholar 

  7. Bonito, A., Pasciak, J.E.: Numerical approximation of fractional powers of elliptic operators. Math. Comput. 84, 2083–2110 (2015)

    Article  MathSciNet  Google Scholar 

  8. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5(1), 329–359 (1996)

    Article  MathSciNet  Google Scholar 

  9. Druskin, V., Knizhnerman, L., Zaslavsky, M.: Solution of large scale evolutionary problems using rational Krylov subspaces with optimized shifts. SIAM J. Sci. Comput. 31(5), 3760–3780 (2009)

    Article  MathSciNet  Google Scholar 

  10. Elliott, D.: Truncation errors in Padé approximations to certain functions: an alternative approach. Math. Comp. 21, 398–406 (1967)

    MathSciNet  MATH  Google Scholar 

  11. Güttel, S.: Rational Krylov approximation of matrix functions: numerical methods and optimal pole selection. GAMM-Mitt. 36(1), 8–31 (2013)

    Article  MathSciNet  Google Scholar 

  12. Hale, N., Townsend, A.: Fast and accurate computation of Gauss–Legendre and Gauss–Jacobi quadrature nodes and weights. SIAM J. Sci. Comput. 35, A652–A672 (2013)

    Article  MathSciNet  Google Scholar 

  13. Harizanov, S., Lazarov, R., Marinov, P., Margenov, S., Pasciak, J.: Comparison analysis on two numerical methods for fractional diffusion problems based on rational approximations of \(t^\gamma ,\) \(0 \le t \le 1\) (2018). arXiv: 1805.00711v1

  14. Hoorfar, A., Hassani, M.: Inequalities on the Lambert \(W\)-function and hyperpower function. J. Inequal. Pure and Appl. Math. 9(2), 5. Art. 51 (2008)

  15. Moret, I., Novati, P.: Krylov subspace methods for functions of fractional differential operators. Math. Comput. 88, 293–312 (2019)

    Article  MathSciNet  Google Scholar 

  16. Rudin, W.: Functional Analysis. McGraw-Hill, New York (1973)

    MATH  Google Scholar 

  17. Vabishchevich, P.N.: Numerical solution of time-dependent problems with fractional power elliptic operator. Comput. Methods Appl. Math. 18, 111–128 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Aceto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was funded by GNCS-INdAM, PRA-University of Pisa and FRA-University of Trieste. The authors are members of the INdAM research group GNCS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aceto, L., Novati, P. Padé-type Approximations to the Resolvent of Fractional Powers of Operators. J Sci Comput 83, 13 (2020). https://doi.org/10.1007/s10915-020-01198-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01198-w

Keywords

Mathematics Subject Classification

Navigation