Abstract
In this paper, we present and analyze a staggered discontinuous Galerkin method for Darcy flows in fractured porous media on fairly general meshes. A staggered discontinuous Galerkin method and a standard conforming finite element method with appropriate inclusion of interface conditions are exploited for the bulk region and the fracture, respectively. Our current analysis works on fairly general polygonal elements even in the presence of small edges. We prove the optimal convergence estimates in \(L^2\) error for all the variables by exploiting the Ritz projection. Importantly, our error estimates are shown to be fully robust with respect to the heterogeneity and anisotropy of the permeability coefficients. Several numerical experiments including meshes with small edges and anisotropic meshes are carried out to confirm the theoretical findings. Finally, our method is applied in the framework of unfitted mesh.













Similar content being viewed by others
Data Availibility
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
References
Martin, V., Jaffré, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flows in porous media. SIAM J. Sci. Comput. 26, 1667–1691 (2006)
D’Angelo, C., Scotti, A.: A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. ESAIM-Math. Model. Numer. Anal. 46, 465–489 (2012)
Chave, F., Di Pietro, D.A., Formaggia, L.: A hybrid high-order method for Darcy flows in fractured porous media. SIAM J. Sci. Comput. 40, A1063–A1094 (2018)
Antonietti, P.F., Facciolà, C., Russo, A., Verani, M.: Discontinuous Galerkin approximation of flows in fractured porous media on polytopic grids. SIAM J. Sci. Comput. 41, A109–A138 (2019)
Jaffré, J., Roberts, J.E.: Modeling flow in porous media with fractures; discrete fracture models with matrix-fracture exchange. Numer. Anal. Appl. 5(2), 162–167 (2012)
Lipnikov, K., Moulton, J.D., Svyatskiy, D.: A multilevel multiscale mimetic (M3) method for two-phase flows in porous media. J. Comput. Phys. 227, 6727–6753 (2008)
Angot, P., Boyer, F., Hubert, F.: Asymptotic and numerical modelling of flows in fractured porous media. ESAIM-Math. Model. Numer. Anal. 43, 239–275 (2009)
Sandve, T.H., Berre, I., Nordbotten, J.M.: An efficient multi-point flux approximation method for discrete fracture-matrix simulations. J. Comput. Phys. 231, 3784–3800 (2012)
Berrone, S., Pieraccini, S., Scialó, S.: On simulations of discrete fracture network flows with an optimization-based extended finite element method. SIAM J. Sci. Comput. 35, A908–A935 (2013)
Fumagalli, A., Scotti, A.: A numerical method for two-phase flow in fractured porous media with non-matching grids. Adv. Water Resour. 62, 454–464 (2013)
Benedetto, M.F., Berrone, S., Pieraccini, S., Scialò, S.: The virtual element method for discrete fracture network simulations. Comput. Meth. Appl. Mech. Eng. 280, 135–156 (2014)
Brenner, K., Groza, M., Guichard, C., Lebeau, G., Masson, R.: Gradient discretization of hybrid dimensional Darcy flows in fractured porous media. Numer. Math. 134, 569–609 (2016)
Antonietti, P.F., Formaggia, L., Scotti, A., Verani, M., Verzotti, N.: Mimetic finite difference approximation of flows in fractured porous media. ESAIM-Math. Model. Numer. Anal. 50, 809–832 (2016)
Chen, H., Salama, A., Sun, S.: Adaptive mixed finite element methods for Darcy flow in fractured porous media. Water Resour. Res. 52, 7851–7868 (2016)
Chen, H., Sun, S.: A residual-based a posteriori error estimator for single-phase Darcy flow in fractured porous media. Numer. Math. 136, 805–839 (2017)
Brenner, K., Hennicker, J., Masson, R., Samier, P.: Gradient discretization of hybrid dimensional Darcy flows in fractured porous media with discontinuous pressure at matrix fracture interfaces. IMA J. Numer. Anal. 37, 1551–1585 (2017)
Del Pra, M., Fumagalli, A., Scotti, A.: Well posedness of fully coupled fracture/bulk Darcy flow with XFEM. SIAM J. Numer. Anal. 55, 785–811 (2017)
Boon, W.M., Nordboteen, J.M., Yotov, I.: Robust discretization of flow in fractured porous media. SIAM J. Numer. Anal. 56, 2203–2233 (2018)
Formaggia, L., Scotti, A., Sottocasa, F.: Analysis of a mimetic finite difference approximation of flows in fractured porous media. ESAIM-Math. Model. Numer. Anal. 52, 595–630 (2018)
Chung, E.T., Engquist, B.: Optimal discontinuous Galerkin methods for wave propagation. SIAM J. Numer. Anal. 44, 2131–2158 (2006)
Chung, E.T., Engquist, B.: Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions. SIAM J. Numer. Anal. 47, 3820–3848 (2009)
Chung, E.T., Kim, H.H., Widlund, O.B.: Two-level overlapping schwarz algorithms for a staggered discontinuous Galerkin method. SIAM J. Numer. Anal. 51, 47–67 (2013)
Chung, E.T., Ciarlet, P., Jr., Yu, T.F.: Convergence and superconvergence of staggered discontinuous Galerkin methods for the three-dimensional Maxwell’s equations on Cartesian grids. J. Comput. Phys. 235, 14–31 (2013)
Kim, H.H., Chung, E.T., Lee, C.S.: A staggered discontinuous Galerkin method for the Stokes system. SIAM J. Numer. Anal. 51, 3327–3350 (2013)
Cheung, S.W., Chung, E.T., Kim, H.H., Qian, Y.: Staggered discontinuous Galerkin methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 302, 251–266 (2015)
Lee, J.J., Kim, H.H.: Analysis of a staggered discontinuous Galerkin method for linear elasticity. J. Sci. Comput. 66, 625–649 (2016)
Chung, E.T., Qiu, W.: Analysis of an SDG method for the incompressible Navier-Stokes equations. SIAM J. Numer. Anal. 55, 543–569 (2017)
Chung, E.T., Park, E.-J., Zhao, L.: Guaranteed a posteriori error estimates for a staggered discontinuous Galerkin method. J. Sci. Comput. 75, 1079–1101 (2018)
Zhao, L., Park, E.-J.: A priori and a posteriori error analysis of a staggered discontinuous Galerkin method for convection dominant diffusion equations. J. Comput. Appl. Math. 346, 63–83 (2019)
Chung, E., Fu, G.: The staggered DG method is the limit of a hybridizable DG method. SIAM J. Numer. Anal. 52, 915–932 (2014)
Zhao, L., Park, E.-J.: A staggered discontinuous Galerkin method of minimal dimension on quadrilateral and polygonal meshes. SIAM J. Sci. Comput. 40, A2543–A2567 (2018)
Zhao, L., Park, E.-J., Shin, D.-W.: A staggered DG method of minimal dimension for the Stokes equations on general meshes. Comput. Meth. Appl. Mech. Eng. 345, 854–875 (2019)
Kim, D., Zhao, L., Park, E.-J.: Staggered DG methods for the pseudostress-velocity formulation of the Stokes equations on general meshes. SIAM J. Sci. Comput. 42, A2537–A2560 (2020)
Zhao, L., Park, E.-J.: A new hybrid staggered discontinuous Galerkin method on general meshes. J. Sci. Comput. (2020). https://doi.org/10.1007/s10915-019-01119-6
Zhao, L., Park, E.-J.: A lowest-order staggered DG method for the coupled Stokes-Darcy problem. IMA J. Numer. Anal. 40, 2871–2897 (2020)
Zhao, L., Chung, E.T., Lam, M.F.: A new staggered DG method for the Brinkman problem robust in the Darcy and Stokes limits. Comput. Meth. Appl. Mech. Eng. 364, 112986 (2020)
Zhao, L., Chung, E.T., Park, E.-J., Zhou, G.: Staggered DG method for coupling of the Stokes and Darcy-Forchheimer problems. SIAM J. Numer. Anal. 59, 1–31 (2021)
Cangiani, A., Dong, Z., Georgoulis, E.H., Houston, P.: hp-version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. Springer, Cham (2017)
Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second-order elliptic problems. Math. Comp. 83, 2101–2126 (2014)
Di Pietro, D.A., Ern, A.: A Hybrid High-Order locking-free method for linear elasticity on general meshes. Comput. Meth. Appl. Mech. Engrg. 283, 1–21 (2015)
Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Meth. Appl. Sci. 23, 199–214 (2013)
Beirao da Veiga, L., Lovadina, C., Russo, A.: Stability analysis for the virtual element method. Math. Models Meth. Appl. Sci. 27, 2557–2594 (2017)
Brenner, S.C., Sung, L.-Y.: Virtual element methods on meshes with small edges or faces. Math. Models Meth. Appl. Sci. 28, 1291–1336 (2018)
Cao, S., Chen, L.: Anisotropic error estimates of the linear virtual element method on polygonal meshes. SIAM J. Numer. Anal. 56, 2913–2939 (2018)
Cao, S., Chen, L.: Anisotropic error estimates of the linear nonconforming virtual element methods. SIAM J. Numer. Anal. 57, 1058–1081 (2019)
Cangiani, A., Georgoulis, E.H., Pryer, T., Sutton, O.J.: A posteriori error estimates for the virtual element method. Numer. Math. 137, 857–893 (2017)
Guan, Q.: Weak Galerkin finite element method for Poisson’s equation on polytopal meshes with small edges or faces. J. Comput. Appl. Math. 368, 112584 (2020)
Chung, E.T., Cockburn, B., Fu, G.: The staggered DG method is the limit of a hybridizable DG method. SIAM J. Numer. Anal. 52, 915–932 (2014)
Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)
Apel, T.: Anisotropic finite elements: local estimates and applications. In: Advances in Numerical Mathematics (1999)
Duan, H.-Y., Tan, R.C.E.: On the Poincaré-Friedrichs inequality for piecewise $H^1$ functions in anisotropic discontinuous Galerkin finite element methods. Math. Comp. 80, 119–140 (2011)
Chu, C.-C., Graham, I.G., Hou, T.-Y.: A new multiscale finite element method for high-contrast elliptic interface problems. Math. Comp. 79, 1915–1955 (2010)
Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41, 637–676 (1999)
Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45, 309–328 (2012)
Badia, S., Verdugo, F., Martín, A.F.: The aggregated unfitted finite element method for elliptic problems. Comput. Meth. Appl. Mech. Eng. 336, 533–553 (2018)
Chen, C.-Y., Meiburg, E.: Miscible porous media displacements in the quarter five-spot configuration: Part 1–The homogeneous case. J. Fluid Mech. 371, 233–268 (1998)
Petitjeans, P., Chen, C.Y., Meiburg, E., Maxworthy, T.: Miscible quarter five-spot displacements in a Hele-Shaw cell and the role of flow-induced dispersion. Phys. Fluids 11, 1705–1716 (1999)
Kim, M.-Y., Park, E.-J., Thomas, S.G., Wheeler, M.F.: A multiscale mortar mixed finite element method for slightly compressible flows in porous media. J. Korean Math. Soc. 44, 1103–1119 (2007)
Acknowledgements
The research of Eric Chung is partially supported by the Hong Kong RGC General Research Fund (Project Numbers 14304217 and 14302018), CUHK Faculty of Science Direct Grant 2019-20 and NSFC/RGC Joint Research Scheme (Project Number HKUST620/15). The research of Eun-Jae Park was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (NRF-2015R1A5A1009350 and NRF-2019R1A2C2090021).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhao, L., Kim, D., Park, EJ. et al. Staggered DG Method with Small Edges for Darcy Flows in Fractured Porous Media. J Sci Comput 90, 83 (2022). https://doi.org/10.1007/s10915-022-01760-8
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-022-01760-8