Skip to main content
Log in

A Fast Iterative Solver for Multidimensional Spatial Fractional Cahn-Hilliard Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is concerned with the fast algorithm for solving multidimensional spatial fractional Cahn-Hilliard equations. The equations are discretized by a linear and energy-stable finite difference scheme. It gives a system of linear equations with a \(2\times 2\) indefinite ill-conditioned block matrix. We construct a positive definite block preconditioner based on the sine transform for the minimal residual method to solve the indefinite system. Theoretically, we prove that all the eigenvalues of the preconditioned matrix are located in the intervals \([-\frac{3}{2},-\frac{1}{2\sqrt{2}}]\cup [\frac{1}{2\sqrt{2}},\frac{3}{2}]\) without outliers. Thus, the preconditioned MINRES method has a linear convergence rate within an iteration number independent of the matrix size. A fast implementation is presented for the preconditioned matrix–vector multiplication, which reduces the computation complexity significantly. The matrix-size independent convergence rate and the fast implementation guarantee a linearithmic (nearly optimal) complexity of the proposed solver. Numerical examples are given to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data of natural images and codes involved in this paper are available from the corresponding author on reasonable request.

Notes

  1. a matrix diagonalizable by (multi-dimension) discrete sine transform.

  2. see Lemma 7

References

  1. Abels, H., Bosia, S., Grasselli, M.: Cahn-Hilliard equation with nonlocal singular free energies. Ann. Mat. Pura Appl. 194, 1071–1106 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Aboelenen, T., EI-Hawary, H.: A high-order nodal discontinuous Galerkin method for a linearized fractional Cahn-Hilliard equation. Comput. Math. Appl. 73, 1197–1217 (2017)

  3. Akrivis, G., Li, B., Li, D.: Energy-decaying extrapolated RK-SAV methods for the Allen-Cahn and Cahn-Hilliard equations. SIAM J. Sci. Comput 41, A3703–A3727 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Ainsworth, M., Mao, Z.: Well-posedness of the Cahn-Hilliard equation with fractional free energy and its Fourier Galerkin approximation. Chaos Solitons Fractals. 102, 264–273 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Ainsworth, M., Mao, Z.: Analysis and approximation of a fractional Cahn-Hilliard equation. SIAM J. Numer. Anal. 55, 1689–1718 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Akagi, G., Schimperna, G., Segatti, A.: Fractional Cahn-Hilliard, Allen-Cahn and porous medium equations. J. Differ. Equ. 261, 2935–2985 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Akagi, G., Schimperna, G., Segatti, A.: Convergence of solutions for the fractional Cahn-Hilliard system. J. Funct. Anal. 276, 2663–2715 (2022)

    MathSciNet  MATH  Google Scholar 

  8. Bai, Z., Benzi, M., Chen, F., Wang, Z.: Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems. IMA J. Numer. Anal. 33, 343–369 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Bertozzi, J., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans. Image Process. 16, 285–291 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Bini, D., Benedetto, F.: A new preconditioner for the parallel solution of positive definite Toeplitz systems, In Proc. 2nd SPAA Conf. Crete (Greece). 220–223, (1990)

  11. Bosch, J., Stoll, M.: A fractional inpainting model based on the vector-valued Cahn-Hilliard equation. SIAM J. Imaging Sci. 8, 2352–2382 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Bu, L., Mei, L., Hou, Y.: Stable second-order schemes for the space-fractional Cahn-Hilliard and Allen-Cahn equations. Comput. Math. Appl. 78, 3485–3500 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Bu, L., Mei, L., Wang, Y., Hou, Y.: Energy stable numerical schemes for the fractional-in-space Cahn-Hilliard equation. Appl. Numer. Math. 158, 392–414 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Cahn, J., Hilliard, J.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. phys. 28, 129–144 (1958)

    MATH  Google Scholar 

  15. Capuzzo, D., Finzi, V., March, R.: Area-preserving curve-shortening flows: from phase separation to image processing. Interfaces Free. Bound. 4, 325–343 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Carreras, B., Lynch, V., Zaslavsky, G.: Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence models. Phys. Plasma. 8, 5096–5103 (2001)

    MATH  Google Scholar 

  17. Celik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Dahmani, Z., Benbachir, M.: Solutions of the Cahn-Hilliard equation with time- and space-fractional derivatives. Int. J. Nonlinear Sci. 8, 19–26 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Elman, H., Silvester, D., Wathen, A.: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Numeri. Math, Scie (2014)

  21. Eyre, D.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. MRS. Proc 529, 39–46 (1998)

    MathSciNet  MATH  Google Scholar 

  22. Fang, Z., Lin, X., Ng, M., Sun, H.: Preconditioning for symmetric positive definite systems in balanced fractional diffusion equations. Numer. Math. 147, 651–677 (2021)

    MathSciNet  MATH  Google Scholar 

  23. Feng, X., Tang, T., Yang, J.: Stabilized Crank-Nicolson/Adams-Bashforth Schemes for Phase Field Models, E. Asian. J. Appl. Math. 3, 59–80 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Ferrari, P., Furci, I., Hon, S., Ayman-Mursaleen, M., Serra-Capizzano, S.: The eigenvalue distribution of special \(2\)-by-\(2\) block matrix-sequences with applications to the case of symmetrized Toeplitz structures. SIAM J. Matrix Anal. Appl. 40, 1066–1086 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Hon, S., Serra-Capizzano, S., Wathen, A.: Band-Toeplitz preconditioners for ill-conditioned Toeplitz systems. BIT 62, 465–491 (2022)

    MathSciNet  MATH  Google Scholar 

  26. Hon, S., Dong, J., Serra-Capizzano, S.: A preconditioned MINRES method for optimal control of wave equations and its asymptotic spectral distribution theory. SIAM J. Matrix Anal. Appl. 44, 1477–1509 (2023)

    MathSciNet  MATH  Google Scholar 

  27. Huang, J.: High-order energy stable discrete variational derivative schemes for gradient flows. IMA. Numer. Anal. 00, 1–32 (2024)

    MATH  Google Scholar 

  28. Huang, X., Lin, X., Ng, M., Sun, H.: Spectral analysis for preconditioning of multi-dimensional Riesz fractional diffusion equations. Numer. Math. Theor. Meth. Appl. 15, 565–591 (2022)

    MathSciNet  MATH  Google Scholar 

  29. Huang, X., Li, D., Sun, H., Zhang, F.: Preconditioners with symmetrized techniques for space fractional Cahn-Hilliard equations. J. Sci. Comput. 92, 1–25 (2022)

    MathSciNet  MATH  Google Scholar 

  30. Huang, X., Li, D., Sun, H.: Preconditioned SAV-leapfrog finite difference methods for spatial fractional Cahn-Hilliard equations. Appl. Math. Lett. 138, 108510 (2023)

    MathSciNet  MATH  Google Scholar 

  31. Li, C., Lin, X., Hon, S., Wu, S.: A preconditioned MINRES method for block lower triangular Toeplitz systems. J. Sci. Comput. 100, 1–22 (2024)

    MathSciNet  MATH  Google Scholar 

  32. Li, D., Li, X.: Relaxation exponential Rosenbrock-type methods for oscillatory Hamiltonian systems. SIAM J. Sci. Comput. 45, A2886–A2911 (2023)

    MathSciNet  MATH  Google Scholar 

  33. Li, D., Li, X., Zhang, Z.: Implicit-explicit relaxation Runge-Kutta methods: construction, analysis and applications to PDEs. Math. Comput. 92, 117–146 (2023)

    MathSciNet  MATH  Google Scholar 

  34. Lei, S., Sun, H.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Lin, X., Li, C., Hon, S.: Absolute-value based preconditioner for complex-shifted Laplacian systems, https://doi.org/10.13140/RG.2.2.36084.94084.

  36. Lin, X., Ng, M., Sun, H.: A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations. SIAM J. Matrix Anal. Appl. 38, 1580–1614 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Lin, X., Ng, M.: A fast solver for multidimensional time-space fractional diffusion equation with variable coefficients. Comput. Math. Appl. 78, 1477–1489 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Macías-Díaz, J.: A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives. J. Comput. Phys. 351, 40–58 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Miranville, A.: The Cahn-Hilliard equation: Recent Advances and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, Philadelphia. SIAM, PA (2019)

    MATH  Google Scholar 

  40. Ng, M.: Iterative methods for Toeplitz systems. Oxford University Press, New York (2004)

  41. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, CA (1999)

  42. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Switzerland (1993)

  43. Serra, S.: New PCG based algorithms for the solution of Hermitian Toeplitz systems. Calcolo 32, 153–176 (1995)

    MathSciNet  MATH  Google Scholar 

  44. Serra, S.: Superlinear PCG methods for symmetric Toeplitz systems. Math. Comp. 68, 793–803 (1999)

    MathSciNet  MATH  Google Scholar 

  45. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev 61, 474–506 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Tarasov, V.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media Higher Education Press, (2010)

  48. Wang, F., Chen, H., Wang, H.: Finite element simulation and efficient algorithm for fractional Cahn-Hilliard equation. J. Comput. Appl. Math. 356, 248–266 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Weng, Z., Zhai, S., Feng, X.: A Fourier spectral method for fractional-in-space Cahn-Hilliard equation. Appl. Math. Model. 42, 462–477 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Xue, Z., Zhao, X.: Compatible energy dissipation of the variable-step L1 scheme for the space-time fractional Cahn-Hilliard equation. SIAM J. Sci. Comput. 45, A2539–A2560 (2023)

    MathSciNet  MATH  Google Scholar 

  51. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    MathSciNet  MATH  Google Scholar 

  52. Ye, H., Liu, Q., Zhou, M.: An \(L^{\infty }\) bound for solutions of a fractional Cahn-Hilliard equation. Comput. Math. Appl. 79, 3353–3365 (2020)

    MathSciNet  MATH  Google Scholar 

  53. Zhai, S., Wu, L., Wang, J., Weng, Z.: Numerical approximation of the fractional Cahn-Hilliard equation by operator splitting method. Numer. Algorithms. 84, 1155–1178 (2020)

    MathSciNet  MATH  Google Scholar 

  54. Zhao, Y., Li, M., Ostermann, A., Gu, X.: An efficient second-order energy stable BDF scheme for the space fractional Cahn-Hilliard equation. BIT Numer. Math. 61, 1061–1092 (2021)

    MathSciNet  MATH  Google Scholar 

  55. Zhang, M., Zhang, G.: Fast image inpainting strategy based on the space-fractional modified Cahn-Hilliard equations. Comput. Math. Appl. 102, 1–14 (2021)

    MathSciNet  MATH  Google Scholar 

  56. Wang, H., Wang, K., Sircar, T.: A direct \(\cal{O} (N\log 2N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant nos. 11771162, 12231003, 12301480), research grants of the Science and Technology Development Fund, Macau SAR (file no. 0122/2020/A3), University of Macau (file no. MYRG-GRG2023–00085-FST-UMDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelei Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Natural Science Foundation of China (Grant nos. 11771162, 12231003, 12301480), China Postdoctoral Science Foundation (Grant 2023M731205), research grants of the Science and Technology Development Fund, Macau SAR (file no. 0122/2020/A3), University of Macau (file no. MYRG-GRG2023–00085-FST-UMDF).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Li, D., Lin, X. et al. A Fast Iterative Solver for Multidimensional Spatial Fractional Cahn-Hilliard Equations. J Sci Comput 102, 58 (2025). https://doi.org/10.1007/s10915-025-02795-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-025-02795-3

Keywords

Mathematics Subject Classification

Navigation