Skip to main content

Advertisement

Log in

Patients Decision Aid System Based on FHIR Profiles

  • Patient Facing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Patients are becoming more and more involved in clinical decision-making process. Several factors support this process. Advances in omics allows individualization of diagnosis and treatment. Patient awareness and easy availability of data on the Internet allows patients to become informed decision makers when it comes even to disease management. Mass media emphasize the issue of medical errors, making patients demanding for quality in medical care. In some healthcare settings, patents face a problem of interpreting medical data and making decisions on treatment tactics without having a doctor, who could potentially support them. Delegating this task to a Patient Decision Aide system can add automatically generated recommendations to result reports without adding significant workload on the doctors, increase patients’ motivation and support their decisions. We have implemented a patient decision aid system based on the productions rules, which: Collects data from available sources; Automatically analyses and interprets laboratory test results; Recommends running additional tests for a more precise diagnostic; Delivers automatically generated reports to doctors and patients in a natural language. To achieve semantic interoperability with other systems we have implemented a FHIR engine. The knowledge base has been organized as a graph structure. The application is structured as a set of lightly coupled services, which implement the logic of the decision support system. In total, we have modelled 365 nodes of test components, 5084 nodes of inference rules, 49932 connections and 3072 blocks of text for medical certificates. The findings of the research provide a deep understanding of how the semantically interoperable clinical decision support systems are implemented. Advances in notification the patients with the elements of patient decision aid is important for clinical data management, and for patients’ empowerment and protection. We suppose that the system empowering patients in such way can play a meaningful role in helping patients to make informed decisions during the process of diagnostics and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Arnold, C. W., McNamara, M., El-Saden, S., Chen, S., Taira, R. K., and Bui, A. A., Imaging informatics for consumer health: Towards a radiology patient portal. J Am Med Inform Assoc 20:1028–1036, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Atalag, K., Yang, H. Y., Tempero, E., and Warren, J., Model driven development of clinical information sytems using openEHR. Stud Health Technol Inform 169:849–853, 2011.

    PubMed  Google Scholar 

  3. Baldwin, D. M., Quintela, J., Duclos, C., Staton, E. W., and Pace, W. D., Patient preferences for notification of normal laboratory test results: A report from the ASIPS collaborative. BMC Fam Pract 6:11, 2005.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Barros Castro, J., Lamelo Alfonsin, A., Prieto Cebreiro, J., Rimada Mora, D., Carrajo Garcia, L., and Vazquez Gonzalez, G., Development of ISO 13606 archetypes for the standardisation of data registration in the primary care environment. Stud Health Technol Inform 210:877–881, 2015.

    PubMed  Google Scholar 

  5. Berry, K. J., Johnston, J. E., and Mielke, Jr., P. W., Weighted kappa for multiple raters. Percept Mot Skills 107:837–848, 2008.

    Article  PubMed  Google Scholar 

  6. Boegl, K., Adlassnig, K. P., Hayashi, Y., Rothenfluh, T. E., and Leitich, H., Knowledge acquisition in the fuzzy knowledge representation framework of a medical consultation system. Artif Intell Med 30:1–26, 2004.

    Article  PubMed  Google Scholar 

  7. Callen, J. L., Westbrook, J. I., Georgiou, A., and Li, J., Failure to follow-up test results for ambulatory patients: A systematic review. J Gen Intern Med 27:1334–1348, 2012.

    Article  PubMed  Google Scholar 

  8. Campbell, L., Watkins, R. M., and Teasdale, C., Communicating the result of breast biopsy by telephone or in person. Br J Surg 84:1381, 1997.

    Article  PubMed  CAS  Google Scholar 

  9. Ceriello, A., Barkai, L., Christiansen, J. S., Czupryniak, L., Gomis, R., Harno, K., Kulzer, B., Ludvigsson, J., Nemethyova, Z., Owens, D., Schnell, O., Tankova, T., Taskinen, M. R., Verges, B., Weitgasser, R., and Wens, J., Diabetes as a case study of chronic disease management with a personalized approach: The role of a structured feedback loop. Diabetes Res Clin Pract 98:5–10, 2012.

    Article  PubMed  Google Scholar 

  10. Chi, C. L., Nick Street, W., Robinson, J. G., and Crawford, M. A., Individualized patient-centered lifestyle recommendations: An expert system for communicating patient specific cardiovascular risk information and prioritizing lifestyle options. J Biomed Inform 45:1164–1174, 2012.

    Article  PubMed  Google Scholar 

  11. Choi, J., and Kim, H., Enhancement of decision rules to increase generalizability and performance of the rule-based system assessing risk for pressure ulcer. Appl Clin Inform 4:251–266, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Cox, C. E., White, D. B., and Abernethy, A. P., A universal decision support system. Addressing the decision-making needs of patients, families, and clinicians in the setting of critical illness. Am J Respir Crit Care Med 190:366–373, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dexheimer, J. W., Abramo, T. J., Arnold, D. H., Johnson, K., Shyr, Y., Ye, F., Fan, K. H., Patel, N., and Aronsky, D., Implementation and evaluation of an integrated computerized asthma management system in a pediatric emergency department: A randomized clinical trial. Int J Med Inform 83:805–813, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dixon, B. E., Simonaitis, L., Goldberg, H. S., Paterno, M. D., Schaeffer, M., Hongsermeier, T., Wright, A., and Middleton, B., A pilot study of distributed knowledge management and clinical decision support in the cloud. Artif Intell Med 59:45–53, 2013.

    Article  PubMed  Google Scholar 

  15. Duke, J. D., Morea, J., Mamlin, B., Martin, D. K., Simonaitis, L., Takesue, B. Y., Dixon, B. E., and Dexter, P. R., Regenstrief Institute's medical gopher: A next-generation homegrown electronic medical record system. Int J Med Inform 83:170–179, 2014.

    Article  PubMed  Google Scholar 

  16. Haeckel, R., Wosniok, W., and Arzideh, F., Proposed classification of various limit values (guide values) used in assisting the interpretation of quantitative laboratory test results. Clin Chem Lab Med 47:494–497, 2009.

    PubMed  CAS  Google Scholar 

  17. Herrick, D. B., Nakhasi, A., Nelson, B., Rice, S., Abbott, P. A., Saber Tehrani, A. S., Rothman, R. E., Lehmann, H. P., and Newman-Toker, D. E., Usability characteristics of self-administered computer-assisted interviewing in the emergency department: Factors affecting ease of use, efficiency, and entry error. Appl Clin Inform 4:276–292, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Herwehe, J., Wilbright, W., Abrams, A., Bergson, S., Foxhood, J., Kaiser, M., Smith, L., Xiao, K., Zapata, A., and Magnus, M., Implementation of an innovative, integrated electronic medical record (EMR) and public health information exchange for HIV/AIDS. J Am Med Inform Assoc 19:448–452, 2012.

    Article  PubMed  Google Scholar 

  19. Hsieh, N. C., Chang, C. Y., Lee, K. C., Chen, J. C., and Chan, C. H., Technological innovations in the development of cardiovascular clinical information systems. J Med Syst 36:965–978, 2012.

    Article  PubMed  Google Scholar 

  20. Johnson, K. B., Ho, Y. X., Andrew Spooner, S., Palmer, M., and Weinberg, S. T., Assessing the reliability of an automated dose-rounding algorithm. J Biomed Inform 46:814–821, 2013.

    Article  PubMed  Google Scholar 

  21. Kashfi, H., An openEHR-based clinical decision support system: A case study. Stud Health Technol Inform 150:348, 2009.

    PubMed  Google Scholar 

  22. Kastner, M., and Straus, S. E., Application of the knowledge-to-action and Medical Research Council frameworks in the development of an osteoporosis clinical decision support tool. J Clin Epidemiol 65:1163–1170, 2012.

    Article  PubMed  Google Scholar 

  23. Kawada, T., Sample size in receiver-operating characteristic (ROC) curve analysis. Circ J 76:768, 2012 author reply 769.

    Article  PubMed  Google Scholar 

  24. Khalilia, M., Choi, M., Henderson, A., Iyengar, S., Braunstein, M., and Sun, J., Clinical predictive modeling development and deployment through FHIR web services. AMIA Annu Symp Proc 2015:717–726, 2015.

    PubMed  PubMed Central  Google Scholar 

  25. Kopanitsa, G., Evaluation study for an ISO 13606 archetype based medical data visualization method. J Med Syst 39:82, 2015.

    Article  PubMed  Google Scholar 

  26. Kuru, K., Girgin, S., Arda, K., and Bozlar, U., A novel report generation approach for medical applications: The SISDS methodology and its applications. Int J Med Inform 82:435–447, 2013.

    Article  PubMed  CAS  Google Scholar 

  27. LeBlanc, A., Ruud, K. L., Branda, M. E., Tiedje, K., Boehmer, K. R., Pencille, L. J., Van Houten, H., Matthews, M., Shah, N. D., May, C. R., Yawn, B. P., and Montori, V. M., The impact of decision aids to enhance shared decision making for diabetes (the DAD study): Protocol of a cluster randomized trial. BMC Health Serv Res 12:130, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Leroux, H., Metke-Jimenez, A., and Lawley, M. J., Towards achieving semantic interoperability of clinical study data with FHIR. J Biomed Semantics 8:41, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lin, H. C., Wu, H. C., Chang, C. H., Li, T. C., Liang, W. M., and Wang, J. Y., A real time online assessment system with modelized architecture on clinical infometrics for patient reported outcomes of prostate cancer. Comput Methods Programs Biomed 106:249–259, 2012.

    Article  PubMed  Google Scholar 

  30. Lindblom, K., Gregory, T., Wilson, C., Flight, I. H., and Zajac, I., The impact of computer self-efficacy, computer anxiety, and perceived usability and acceptability on the efficacy of a decision support tool for colorectal cancer screening. J Am Med Inform Assoc 19:407–412, 2012.

    Article  PubMed  Google Scholar 

  31. Luo, G., Tang, C., and Thomas, S. B., Intelligent personal health record: Experience and open issues. J Med Syst 36:2111–2128, 2012.

    Article  PubMed  Google Scholar 

  32. Marcos, M., Maldonado, J. A., Martinez-Salvador, B., Bosca, D., and Robles, M., Interoperability of clinical decision-support systems and electronic health records using archetypes: A case study in clinical trial eligibility. J Biomed Inform 46:676–689, 2013.

    Article  PubMed  Google Scholar 

  33. McDermott, M. S., and While, A. E., Maximizing the healthcare environment: A systematic review exploring the potential of computer technology to promote self-management of chronic illness in healthcare settings. Patient Educ Couns 92:13–22, 2013.

    Article  PubMed  Google Scholar 

  34. Ogburn, T., Shared decision making and informed consent for hysterectomy. Clin Obstet Gynecol 57:3–13, 2014.

    Article  PubMed  Google Scholar 

  35. Paun, I. D., Sauciuc, D. G., Iosif, N. O., Stan, O., Perse, A., Dehelean, C., and Miclea, L., Local EHR management based on openEHR and EN13606. J Med Syst 35:585–590, 2011.

    Article  PubMed  Google Scholar 

  36. Pecoraro, F., Luzi, D., and Ricci, F. L., Data warehouse design from HL7 clinical document architecture Schema. Stud Health Technol Inform 213:139–142, 2015.

    PubMed  Google Scholar 

  37. Pulley, J. M., Denny, J. C., Peterson, J. F., Bernard, G. R., Vnencak-Jones, C. L., Ramirez, A. H., Delaney, J. T., Bowton, E., Brothers, K., Johnson, K., Crawford, D. C., Schildcrout, J., Masys, D. R., Dilks, H. H., Wilke, R. A., Clayton, E. W., Shultz, E., Laposata, M., McPherson, J., Jirjis, J. N., and Roden, D. M., Operational implementation of prospective genotyping for personalized medicine: The design of the Vanderbilt PREDICT project. Clin Pharmacol Ther 92:87–95, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Quaglini, S., Sacchi, L., Lanzola, G., and Viani, N., Personalization and patient involvement in decision support systems: Current trends. Yearb Med Inform 10:106–118, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Riano, D., Real, F., Lopez-Vallverdu, J. A., Campana, F., Ercolani, S., Mecocci, P., Annicchiarico, R., and Caltagirone, C., An ontology-based personalization of health-care knowledge to support clinical decisions for chronically ill patients. J Biomed Inform 45:429–446, 2012.

    Article  PubMed  Google Scholar 

  40. Romatowski, J., Problems in interpretation of clinical laboratory test results. J Am Vet Med Assoc 205:1186–1188, 1994.

    PubMed  CAS  Google Scholar 

  41. Saverno, K. R., Rochau, U., Stenehjem, D. D., Morley, K., Siebert, U., and Brixner, D. I., Application of decision-analytic models in personalized medicine for CML treatment decisions made by payers, providers, and patients. J Manag Care Pharm 18:457–463, 2012.

    PubMed  Google Scholar 

  42. Semenov, I., and Kopanitsa, G., Implementation of a decision support system for interpretation of laboratory tests for patients. Stud Health Technol Inform 221:79–83, 2016.

    PubMed  Google Scholar 

  43. Semenov, I., Kopanitsa, G., Karpov, A., Lakovenko, G., and Laskovenko, A., Implementation of a clinical decision support system for interpretation of laboratory tests for patients. Stud Health Technol Inform 224:184–188, 2016.

    PubMed  Google Scholar 

  44. Simon, D., Kriston, L., von Wolff, A., Buchholz, A., Vietor, C., Hecke, T., Loh, A., Zenker, M., Weiss, M., and Harter, M., Effectiveness of a web-based, individually tailored decision aid for depression or acute low back pain: A randomized controlled trial. Patient Educ Couns 87:360–368, 2012.

    Article  PubMed  Google Scholar 

  45. Stein, B. D., Kogan, J. N., Mihalyo, M. J., Schuster, J., Deegan, P. E., Sorbero, M. J., and Drake, R. E., Use of a computerized medication shared decision making tool in community mental health settings: Impact on psychotropic medication adherence. Community Ment Health J 49:185–192, 2013.

    Article  PubMed  Google Scholar 

  46. Taranik, M., and Kopanitsa, G., Information system of personalized Patient's adherence level determination. Stud Health Technol Inform 237:68–72, 2017.

    PubMed  Google Scholar 

  47. Wang, H. Q., Li, J. S., Zhang, Y. F., Suzuki, M., and Araki, K., Creating personalised clinical pathways by semantic interoperability with electronic health records. Artif Intell Med 58:81–89, 2013.

    Article  PubMed  Google Scholar 

  48. Wu, R., Boushey, R., Potter, B., and Stacey, D., The evaluation of a rectal cancer decision aid and the factors influencing its implementation in clinical practice. BMC Surg 14:16, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yu, H. J., Lai, H. S., Chen, K. H., Chou, H. C., Wu, J. M., Dorjgochoo, S., Mendjargal, A., Altangerel, E., Tien, Y. W., Hsueh, C. W., and Lai, F., A sharable cloud-based pancreaticoduodenectomy collaborative database for physicians: Emphasis on security and clinical rule supporting. Comput Methods Programs Biomed 111:488–497, 2013.

    Article  PubMed  Google Scholar 

Download references

Funding

The research is funded from Russian Science Foundation (RSF), The research was at Tomsk Polytechnic University within the framework of Tomsk Polytechnic University Competitiveness Enhancement Program grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgy Kopanitsa.

Ethics declarations

Conflict of Interest

Ilia Semenov declares that he has no conflict of interest; Georgy Kopanitsa declares that he has no conflict of interest; Dmitry Denisov declares that he has no conflict of interest; Yakovenko Alexandr declares that he has no conflict of interest; Osenev Roman declares that he has no conflict of interest; Andreychuk Yury declares that he has no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Additional information

This article is part of the Topical Collection on Patient Facing Systems

Electronic Supplementary Material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, I., Kopanitsa, G., Denisov, D. et al. Patients Decision Aid System Based on FHIR Profiles. J Med Syst 42, 166 (2018). https://doi.org/10.1007/s10916-018-1016-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-018-1016-4

Keywords

Navigation