Abstract
Secoisolariciresinoldiglycoside (SDG), a predominant lignan in flaxseed, has antioxidant activity as a dietary supplement. The purpose of the present study was to investigate the antidepressant-like effect and the possible mechanism of flaxseed SDG when the ovariectomized mice were exposed to the unpredictable chronic mild stress procedure. Chronic stress induced the increases in immobility time in mouse model of despair tests, but administration with SDG (80 and 160 mg/kg, p.o.) for 21 days inhibited these behavioral changes caused by stress in both forced swimming and tail suspension tests. These doses that affected the immobile response did not affect locomotor activity. Moreover, the changes in the serum corticosterone and adrenocorticotropic hormone (ACTH) levels were also measured to explore the SDG-associated regulation of hypothalamus-pituitary-adrenals (HPA) axis. The results indicated that the chronic stress-induced increases in the serum corticosterone and ACTH were reversed by treatment with high doses of SDG. Chronic treatment with SDG also affected the body weight of mice and IL-6, IL1β levels in the frontal cortex. In addition, chronic stress procedure induced a decrease in brain-derived neurotrophic factor (BDNF) expression in the frontal cortex of mice; while treatment with SDG reversed this reduction of BDNF. All these results provide compelling evidence that the behavioral effects of flaxseed SDG in the ovariectomized mice might be related to their modulating effects on the neuroendocrine-immune network and neurotrophin factor expression.




Similar content being viewed by others
References
Ahokas A, Kaukoranta J, Aito M (1999) Effect of oestradiol on postpartum depression. Psychopharmacology (Berl) 146:108–110
Amsterdam JD, Marinelli DL, Arger P, Winokur A (1987) Assessment of adrenal gland volume by computed tomography in depressed patients and healthy volunteers: a pilot study. Psychiatry Res 21:189–197
Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB (1999) The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 160:1–12
Banasr M, Hery M, Printemps R, Daszuta A (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29:450–460
Bekku N, Yoshimura H (2005) Animal model of menopausal depressive-like state in female mice: prolongation of immobility time in the forced swimming test following ovariectomy. Psychopharmacology (Berl) 183:300–307
Bekku N, Yoshimura H, Araki H (2006) Factors producing a menopausal depressive-like state in mice following ovariectomy. Psychopharmacology (Berl) 187:170–180
Beral V, Bull D, Green J, Reeves G (2007) Ovarian cancer and hormone replacement therapy in the Million Women Study. Lancet 369:1703–1710
Birkved FK, Mortensen A, Penalvo JL, Lindecrona RH, Sorensen IK (2011) Investigation into the cancer protective effect of flaxseed in Tg.NK (MMTV/c-neu) mice, a murine mammary tumor model. Genes Nutr 6:403–411
Carroll BJ, Curtis GC, Mendels J (1976) Neuroendocrine regulation in depression. II. Discrimination of depressed from nondepressed patients. Arch Gen Psychiatry 33:1051–1058
Centeno VA, Volosin M (1997) Chronic treatment with desipramine: effect on endocrine and behavioral responses induced by inescapable stress. Physiol Behav 62:939–944
Cohen LS, Soares CN, Vitonis AF, Otto MW, Harlow BL (2006) Risk for new onset of depression during the menopausal transition: the Harvard study of moods and cycles. Arch Gen Psychiatry 63:385–390
Dabrosin C, Chen J, Wang L, Thompson LU (2002) Flaxseed inhibits metastasis and decreases extracellular vascular endothelial growth factor in human breast cancer xenografts. Cancer Lett 185:31–37
Davidge ST, Zhang Y, Stewart KG (2001) A comparison of ovariectomy models for estrogen studies. Am J Physiol Regul Integr Comp Physiol 280:R904–R907
Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctot KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67:446–457
Duffy C, Cyr M (2003) Phytoestrogens: potential benefits and implications for breast cancer survivors. J Womens Health (Larchmt) 12:617–631
Eeckhaut E, Struijs K, Possemiers S, Vincken JP, Keukeleire DD, Verstraete W (2008) Metabolism of the lignan macromolecule into enterolignans in the gastrointestinal lumen as determined in the simulator of the human intestinal microbial ecosystem. J Agric Food Chem 56:4806–4812
Estrada-Camarena E, Lopez-Rubalcava C, Hernandez-Aragon A, Mejia-Mauries S, Picazo O (2011) Long-term ovariectomy modulates the antidepressant-like action of estrogens, but not of antidepressants. J Psychopharmacol 25:1365–1377
Freeman EW, Sammel MD, Lin H, Nelson DB (2006) Associations of hormones and menopausal status with depressed mood in women with no history of depression. Arch Gen Psychiatry 63:375–382
Garcia R (2002) Stress, metaplasticity, and antidepressants. Curr Mol Med 2:629–638
Halbreich U, Kahn LS (2001) Role of estrogen in the aetiology and treatment of mood disorders. CNS Drugs 15:797–817
Halbreich U, Endicott J, Goldstein S, Nee J (1986) Premenstrual changes and changes in gonadal hormones. Acta Psychiatr Scand 74:576–586
Hamilton JA, Parry BL, Blumenthal SJ (1988) The menstrual cycle in context, I: affective syndromes associated with reproductive hormonal changes. J Clin Psychiatry 49:474–480
Ibarguen-Vargas Y, Surget A, Touma C, Palme R, Belzung C (2008) Multifaceted strain-specific effects in a mouse model of depression and of antidepressant reversal. Psychoneuroendocrinology 33:1357–1368
Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM (2002) Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 109:143–148
Kessler RC (1997) The effects of stressful life events on depression. Annu Rev Psychol 48:191–214
Kessler RC (2003) Epidemiology of women and depression. J Affect Disord 74:5–13
Kitts DD, Yuan YV, Wijewickreme AN, Thompson LU (1999) Antioxidant activity of the flaxseed lignan secoisolariciresinol diglycoside and its mammalian lignan metabolites enterodiol and enterolactone. Mol Cell Biochem 202:91–100
Kuipers SD, Bramham CR (2006) Brain-derived neurotrophic factor mechanisms and function in adult synaptic plasticity: new insights and implications for therapy. Curr Opin Drug Discov Devel 9:580–586
Lemay A, Dodin S, Kadri N, Jacques H, Forest JC (2002) Flaxseed dietary supplement versus hormone replacement therapy in hypercholesterolemic menopausal women. Obstet Gynecol 100:495–504
Liu Y, Ho RC, Mak A (2012) Interleukin (IL)-6, tumour necrosis factor alpha (TNF-alpha) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J Affect Disord 139:230–239
Molina VA, Volosin M, Cancela L, Keller E, Murua VS, Basso AM (1990) Effect of chronic variable stress on monoamine receptors: influence of imipramine administration. Pharmacol Biochem Behav 35:335–340
Murphy PG, Borthwick LA, Altares M, Gauldie J, Kaplan D, Richardson PM (2000) Reciprocal actions of interleukin-6 and brain-derived neurotrophic factor on rat and mouse primary sensory neurons. Eur J Neurosci 12:1891–1899
Murua VS, Gomez RA, Andrea ME, Molina VA (1991) Shuttle-box deficits induced by chronic variable stress: reversal by imipramine administration. Pharmacol Biochem Behav 38:125–130
Nelson HD, Humphrey LL, Nygren P, Teutsch SM, Allan JD (2002) Postmenopausal hormone replacement therapy: scientific review. JAMA 288:872–881
Nemeroff CB (2007) The burden of severe depression: a review of diagnostic challenges and treatment alternatives. J Psychiatr Res 41:189–206
O'Brien SM, Scully P, Fitzgerald P, Scott LV, Dinan TG (2007) Plasma cytokine profiles in depressed patients who fail to respond to selective serotonin reuptake inhibitor therapy. J Psychiatr Res 41:326–331
Okada M, Hayashi N, Kometani M, Nakao K, Inukai T (1997) Influences of ovariectomy and continuous replacement of 17beta-estradiol on the tail skin temperature and behavior in the forced swimming test in rats. Jpn J Pharmacol 73:93–96
Oppenheim G (1983) Estrogen in the treatment of depression: neuropharmacological mechanisms. Biol Psychiatry 18:721–725
Raison CL, Capuron L, Miller AH (2006) Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 27:24–31
Russo-Neustadt AA, Beard RC, Huang YM, Cotman CW (2000) Physical activity and antidepressant treatment potentiate the expression of specific brain-derived neurotrophic factor transcripts in the rat hippocampus. Neuroscience 101:305–312
Sachar EJ, Hellman L, Roffwarg HP, Halpern FS, Fukushima DK, Gallagher TF (1973) Disrupted 24-hour patterns of cortisol secretion in psychotic depression. Arch Gen Psychiatry 28:19–24
Saggar JK, Chen J, Corey P, Thompson LU (2010) The effect of secoisolariciresinol diglucoside and flaxseed oil, alone and in combination, on MCF-7 tumor growth and signaling pathways. Nutr Cancer 62:533–542
Schiepers OJ, Wichers MC, Maes M (2005) Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry 29:201–217
Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22:3251–3261
Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15:1768–1777
Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85:367–370
Takahashi J, Palmer TD, Gage FH (1999) Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures. J Neurobiol 38:65–81
Thompson LU, Robb P, Serraino M, Cheung F (1991) Mammalian lignan production from various foods. Nutr Cancer 16:43–52
Tong L, Balazs R, Soiampornkul R, Thangnipon W, Cotman CW (2008) Interleukin-1 beta impairs brain derived neurotrophic factor-induced signal transduction. Neurobiol Aging 29:1380–1393
Tülüce Y, Özkol H, Koyuncu I (2011) Photoprotective effect of flax seed oil (Linum usitatissimum L.) against ultraviolet C-induced apoptosis and oxidative stress in rats. Toxicol Ind Health 28:99–107
Weissman MM, Olfson M (1995) Depression in women: implications for health care research. Science 269:799–801
Xu Y, Ku BS, Yao HY, Lin YH, Ma X, Zhang YH, Li XJ (2005) The effects of curcumin on depressive-like behaviors in mice. Eur J Pharmacol 518:40–46
Xu Y, Ku B, Tie L, Yao H, Jiang W, Ma X, Li X (2006) Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Res 1122:56–64
Acknowledgments
This project was supported by President special talent foundation of Xuzhou Medical College (2011KJZ26) to X. Ma.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Xing Ma, Rui Wang and Xin Zhao contributed equally to this work.
Rights and permissions
About this article
Cite this article
Ma, X., Wang, R., Zhao, X. et al. Antidepressant-like effect of flaxseed secoisolariciresinol diglycoside in ovariectomized mice subjected to unpredictable chronic stress. Metab Brain Dis 28, 77–84 (2013). https://doi.org/10.1007/s11011-012-9371-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11011-012-9371-1