Abstract
Interest point detection plays a significant role in computer vision applications. The most commonly used interest point detector algorithm is scale invariant feature transform (SIFT). The use of Gaussian filter in the SIFT algorithm fails to match interest points on the edge and it also causes blur annoyance in the rescaling process. To overcome this failure Bilateral-Harris Corner Detector (BHCD) has been proposed in this paper. In the proposed BHCD, a Bilateral filter preserves edges by smoothening and removing noise in an image. Accuracy in localization of interest points are improved by using the proposed dynamic blur metric calculation. The Harris corner has been added to get stable and reliable interest point detection. The proposed BHCD has been simulated for the evaluation criteria such as repeatability and matching score. Extensive experimental results show that the proposed method is more robust to illumination, scaling, rotation, compression and viewpoint changes. The experimental evaluation for BHCD has been carried for the object recognition benchmark datasets COIL-100, ZuBud, Caltech-101. The proposed BHCD achieves highest recognition rate compared to the other state-of-the-art methods.










Similar content being viewed by others
References
Agrawal M, Konolige K, Blas MR (2008) CenSurE: center surround Extremas for Realtime feature detection and matching. In: Forsyth D, Torr P, Zisserman A (eds) ECCV 2008, Part IV. LNCS, vol 5305. Springer, Heidelberg, pp 102–115
Bay H, Tuytelaars T, van Gool L (2008) Speeded up robust features. Comput Vis Image Underst 110(3):346–359. doi:10.1016/j.cviu.2007.09.014
Brown M, Lowe DG (2003) Recognising Panoramas. Proceedings of the Ninth IEEE International Conference on Computer Vision 2:1218–1225. doi:10.1109/ICCV.2003.1238630
Chang L, Duarte MM, Sucar LE, Morales EF (2010) Object class recognition using SIFT and Bayesian networks. Advances in Soft Computing, Volume 6438 of the series Lecture Notes in Computer Science, pp 56–66, Springer Berlin Heidelberg
Crete F, Dolmiere T, Ladret P, Nicolas M (2007) The blur effect: perception and estimation with a new no-reference perceptual blur metric. SPIE Human Vision & Electronic Imaging XII, San Jose, United States, vol 6492, pp 64920I–11. doi:10.1117/12.702790
Fei-Fei L, Fergus R, Perona P (2006) One-shot learning of object categories. IEEE Trans Pattern Anal Mach Intell 28(4):594–611. doi:10.1109/TPAMI.2006.79
Fernandez P, Bartoli A, Davison AJ (2012) KAZE Features. In: Proceedings of European Conference on Computer Vision (ECCV), Part VI, Lecture Notes in Computer Science, vol 7577, Florence, Italy, pp 214–227
Harris C, Stephens M (1988) A combined corner and edge detector. In: Proc. of Fourth Alvey Vision Conference, pp 189–192. doi:10.5244/c.2.23
Huang M, Mu Z, Zeng H, Huang H (2015) A novel approach for interest point detection via laplacian-of-bilateral filter. Journal of Sensors, Hindawi Publishing Corporation 2015:9. Article ID 685154. doi:10.1155/2015/685154
Krig S (2014) Interest point detector and feature descriptor survey. Computer Vision Metrics, Springer, pp 217–282
Leutenegger S, Chli M, Siegwart RY 2011) BRISK: binary robust invariant scalable Keypoints. In: roceedings of the IEEE International Conference on Computer Vision (ICCV), IEEE, Barcelona, pp 2548–2555. doi:10.1109/ICCV.2011.6126542
Lowe DG (1999) Object recognition from local scale-invariant features. International Conference on Computer Vision, Corfu, pp 1150–1157. doi:10.1109/ICCV.1999.790410
Lowe DG (2004) Distinctive image features from scale-invariant interest points. Int J Comput Vis 60(2):91–110. doi:10.1023/B:VISI.0000029664.99615.94
Matas J, Chum O, Urban M, Pajdla T (2004) Robust wide-base-line stereo from maximally stable extremal regions. Image Vis Comput 22(10):761–767. doi:10.1016/j.imavis.2004.02.006
Mikolajczyk K, Schmid C (2004) Scale & affine invariant interest point detectors. Int J Comput Vis 60(1):63–86. doi:10.1023/B:VISI.0000027790.02288.f2
Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630. doi:10.1109/TPAMI.2005.188
Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, Van Gool L (2005) A comparison of affine region detectors. Int J Comput Vis 65(1–2):43–72. doi:10.1007/s11263-005-3848-x
Nayar SK, Nene SA and Murase H (1996) Columbia object image library (COIL-100). Dept. Comput. Sci., Columbia Univ., New York, NY, USA, Tech. Rep. CUCS-006-96
Schmid C, Mohr R, Bauckhage C (2000) Evaluation of interest point detectors. Int J Comput Vis 37(2):151–172. doi:10.1023/A:1008199403446
Se S, Lowe David G, Little J (2001) Vision-based mobile robot localization and mapping using scale-invariant features. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (Cat. No.01CH37164), vol 2, pp 2051–2058. doi:10.1109/ROBOT.2001.932909
Shao H, Svoboda T, Van Gool L (2003) ZuBuD — Zurich Buildings Database for Image Based Recognition. Technical Report No. 260, ETH Zurich, Computer Vision Laboratory, Swiss Federal Institute of Technology
Sirmacek B, Unsalan C (2009) Urban area and building detection using SIFT Keypoints and graph theory. IEEE Trans Geosci Remote Sens 47(4):1156–1167. doi:10.1109/TGRS.2008.2008440
Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: The proceedings of 6th IEEE Int. Conf. Computer Vision (IEEE Cat. No.98CH36271), Bombay, pp 834–846. doi:10.1109/ICCV.1998.710815
Zhou H, Yuan Y, Shi C (2009) Object tracking using SIFT features and mean shift. Computer Vision and Image Understanding, Special Issue on Video Analysis 113(3):345–352. doi:10.1016/j.cviu.2008.08.006
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Manoranjitham, R., Deepa, P. Efficient invariant interest point detector using Bilateral-Harris corner detector for object recognition application. Multimed Tools Appl 77, 9365–9378 (2018). https://doi.org/10.1007/s11042-017-4982-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-017-4982-5