Skip to main content

Advertisement

Log in

Automatic knee joint segmentation using Douglas-Rachford splitting method

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In the medical field, magnetic resonance imaging (MRI) scans are widely used for conducting research in osteoarthritis and to study about the disease of a patient. Still the MRI scans provide the details of the knee joint image of a patient, it is difficult to perform quantification of bone, cartilage, and meniscus regions. A fully automatic segmentation is required to segment knee joint, cartilage images from the MRI scan is necessary to reduce manual intervention. In this work, an automatic segmentation technique based on the proximal splitting method is presented. Douglas-Rachford splitting algorithm is employed in this paper. The knee joint structures are analyzed and the cartilage region is segmented. Then the quantization of the cartilage region is performed in which several morphological measures are computed. These measures are used to find out the growth of OA and the effects of drugs on OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Ababneh SY, Prescott JW, Gurcan MN (2011) Automatic graph-cut based segmentation of bones from knee magnetic resonance images for osteoarthritis research. Med Image Anal 15(4):438–448

    Article  Google Scholar 

  2. Berthiaume M-J et al (2005) Meniscal tear and extrusion are strongly associated with progression of symptomatic knee osteoarthritis as assessed by quantitative magnetic resonance imaging. Ann Rheum Dis 64(4):556–563

    Article  Google Scholar 

  3. Carballido-Gamio J, Belongie SJ, Majumdar S (2004) Normalized cuts in 3-D for spinal MRI segmentation. IEEE Trans Med Imaging 23(1):36–44

    Article  Google Scholar 

  4. Chang, K-Y, et al. (2009) Articular cartilage segmentation based on radial transformation. In: Proceedings of Ninth International Conference on Hybrid Intelligent Systems, 2009. HIS'09. Vol. 1. IEEE

  5. Ding C, Cicuttini F, Jones G (2007) Tibial subchondral bone size and knee cartilage defects: relevance to knee osteoarthritis. Osteoarthr Cartil 15(5):479–486

    Article  Google Scholar 

  6. Dodin P et al (2010) Automatic human knee cartilage segmentation from 3-D magnetic resonance images. IEEE Trans Biomed Eng 57(11):2699–2711

    Article  Google Scholar 

  7. Dodin P et al (2011) A fully automated human knee 3D MRI bone segmentation using the ray casting technique. Med Biol Eng Comput 49(12):1413–1424

    Article  Google Scholar 

  8. Douglas J, Rachford HH (1956) On the numerical solution of heat conduction problems in two and three space variables. Trans Am Math Soc 82(2):421–439

    Article  MathSciNet  Google Scholar 

  9. Du X, et al. (2008) 3-D knee cartilage segmentation using a smoothing B-Spline active surface. In: 15th IEEE International Conference on Image Processing, IEEE, 2008. ICIP 2008

  10. Eckstein F, Burstein D, Link TM (2006) Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis. NMR Biomed 19(7):822–854

    Article  Google Scholar 

  11. Felson DT et al (2007) Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheumatol 56(9):2986–2992

    Article  Google Scholar 

  12. Folkesson J, Dam E, Olsen OF, Pettersen P, Christiansen C (2005) Automatic segmentation of the articular cartilage in knee MRI using a hierarchical multi-class classification scheme. In: Duncan JS, Gerig G (eds) Medical image computing and computer-assisted intervention – MICCAI 2005, Lecture notes in computer science, vol 3749. Springer, Berlin, Heidelberg

    Chapter  Google Scholar 

  13. Fripp J et al (2007) Automatic segmentation of the bone and extraction of the bone–cartilage interface from magnetic resonance images of the knee. Phys Med Biol 52(6):1617

    Article  Google Scholar 

  14. Ghosh S, et al. (2000) Watershed segmentation of high resolution magnetic resonance images of articular cartilage of the knee. In: Proceedings of the 22nd Annual International Conference of the IEEE. Engineering in Medicine and Biology Society 2000. Vol. 4. IEEE. pp 3174–3176

  15. Grau V et al (2004) Improved watershed transform for medical image segmentation using prior information. IEEE Trans Med Imaging 23(4):447–458

    Article  Google Scholar 

  16. Guermazi A et al (2009) Osteoarthritis: current role of imaging. Med Clin N Am 93(1):101–126

    Article  MathSciNet  Google Scholar 

  17. Kapur T, et al. (1998) Model-based segmentation of clinical knee MRI. In: Proceedings of IEEE Int’l Workshop on Model-Based 3D Image Analysis

  18. Kauffmann C et al (2003) Computer-aided method for quantification of cartilage thickness and volume changes using MRI: validation study using a synthetic model. IEEE Trans Biomed Eng 50(8):978–988

    Article  Google Scholar 

  19. Li K, Millington S, Wu X, Chen DZ, Sonka M (2005) Simultaneous segmentation of multiple closed surfaces using optimal graph searching. In: Christensen GE, Sonka M (eds) Information processing in medical imaging. IPMI 2005, Lecture notes in computer science, vol 3565. Springer, Berlin, Heidelberg

    Google Scholar 

  20. Liu L et al (2008) Interactive separation of segmented bones in CT volumes using graph cut. Med Image Comput Comput Assist Interv 11:296–304

    Google Scholar 

  21. Liukkonen K, Mononen ME, Tanska P, Saarakkala S, Nieminen MT, Korhonen RK (2017) Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint. Comput Methods Biomech Biomed Eng 20(13):1453–1463. https://doi.org/10.1080/10255842.2017.1375477

    Article  Google Scholar 

  22. Loeuille D et al (2005) Macroscopic and microscopic features of synovial membrane inflammation in the osteoarthritic knee: correlating magnetic resonance imaging findings with disease severity. Arthritis Rheumatol 52(11):3492–3501

    Article  Google Scholar 

  23. Lorigo LM et al (1998) Segmentation of bone in clinical knee MRI using texture-based geodesic active contours. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin, Heidelberg

    Google Scholar 

  24. Muneeswaran V, Rajasekaran MP (2018) Beltrami-regularized denoising filter based on tree seed optimization algorithm: an ultrasound image application. In: Satapathy S, Joshi A (eds) Information and communication technology for intelligent systems (ICTIS 2017) —vol 1, Smart innovation, systems and technologies, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-319-63673-3_54

    Chapter  Google Scholar 

  25. Muneeswaran V, Rajasekaran MP (2019) Local contrast regularized contrast limited adaptive histogram equalization using tree seed algorithm—an aid for mammogram images enhancement. In: Smart intelligent computing and applications. Springer, Singapore, pp 693–701

    Chapter  Google Scholar 

  26. Muneeswaran V, Rajasekaran MP (2019) Automatic segmentation of gallbladder using bio-inspired algorithm based on a spider web construction model. J Supercomput 75(6):3158–3183

    Article  Google Scholar 

  27. Muneeswaran V, Rajasekaran MP (2019) Automatic segmentation of gallbladder using intuitionistic fuzzy based active contour model. In: Microelectronics, Electromagnetics and Telecommunications. Springer, Singapore, pp 651–658

    Chapter  Google Scholar 

  28. Pelletier J-P et al (2008) A new non-invasive method to assess synovitis severity in relation to symptoms and cartilage volume loss in knee osteoarthritis patients using MRI. Osteoarthr Cartil 16:S8–S13

    Article  Google Scholar 

  29. Peterfy CG, Schneider E, Nevitt M (2008) The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthr Cartil 16(12):1433–1441

    Article  Google Scholar 

  30. Raj A, Vishwanathan S, Ajani B, Krishnan K, Agarwal H (2018) Automatic knee cartilage segmentation using fully volumetric convolutional neural networks for evaluation of osteoarthritis. In: IEEE 15th international symposium on biomedical imaging (ISBI 2018) April 4–7, 2018, Washington, DC, USA

  31. Raynauld P et al (2004) Quantitative magnetic resonance imaging evaluation of knee osteoarthritis progression over two years and correlation with clinical symptoms and radiologic changes. Arthritis Rheumatol 50(2):476–487

    Article  Google Scholar 

  32. Ringenbach A, Schwägli T (2012) A robust and accurate segmentation of the knee bones from CT data. Biomedical Engineering/Biomedizinische Technik 57(Suppl-1):Track-B

    Google Scholar 

  33. Schmid J, Magnenat-Thalmann N (2008) MRI bone segmentation using deformable models and shape priors. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, Heidelberg

    Google Scholar 

  34. Shan L, Charles C, Niethammer M (2012) Automatic multi-atlas-based cartilage segmentation from knee MR images. Proc IEEE Int Symp Biomed Imaging 2012:1028–1031

    Google Scholar 

  35. Tamez-Peña JG et al (2012) Unsupervised segmentation and quantification of anatomical knee features: data from the osteoarthritis initiative. IEEE Trans Biomed Eng 59(4):1177–1186

    Article  Google Scholar 

  36. Tang J et al (2006) Surface extraction and thickness measurement of the articular cartilage from MR images using directional gradient vector flow snakes. IEEE Trans Biomed Eng 53(5):896–907

    Article  Google Scholar 

  37. Tran T-T, et al. (2008) MRI image segmentation based on fast global minimization of snake model. In: Proceedings of 10th international conference on control, automation, robotics and vision, 2008. ICARCV 2008. IEEE

  38. Williams TG et al (2010) Anatomically corresponded regional analysis of cartilage in asymptomatic and osteoarthritic knees by statistical shape modelling of the bone. IEEE Trans Med Imaging 29(8):1541–1559

    Article  Google Scholar 

  39. Yin Y et al (2010) LOGISMOS—layered optimal graph image segmentation of multiple objects and surfaces: cartilage segmentation in the knee joint. IEEE Trans Med Imaging 29(12):2023–2037

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Rini.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rini, C., Perumal, B. & Rajasekaran, M.P. Automatic knee joint segmentation using Douglas-Rachford splitting method. Multimed Tools Appl 79, 6599–6621 (2020). https://doi.org/10.1007/s11042-019-08303-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08303-8

Keywords

Navigation