Abstract
Reversible Data Hiding (RDH) is one of the popular and highly recommended methods to enhance medical data security or Electronic Patient Record (EPR) privacy. In medical field, care must be taken to maintain the confidentiality of information within the clinical images without causing any degradation to the original quality of the medical image, which corresponds to the diagnosis of a patient. In this presented approach, we introduce a variation to the RDH scheme, which enables higher data capacity to be embedded without causing any significant impact on the quality of medical images. Rhombus Mean Interpolation technique is employed for predicting the interpolated points in the cover image instead of Pixel To Block (PTB) conversion procedure. We used the data related to the patient diagnosis as the secret information to be embedded in medical images, checksum for 2 x 2 non-overlapping block is also embedded for tamper detection and content authentication at the receiver. Validated the quality of the marked image after integration, in terms of PSNR and SSIM metrics. It is observed to have significant improvement in Embedding capacity up to 3 bpp and better image quality compared to the existing schemes.















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abadi MAM, Danyali H, Helfroush MS (2010) Reversible watermarking based on interpolation error histogram shifting. 5th International Symposium on Telecommunications (IST), Kish Island, Iran, p 840–845
Abd El-Latif AA, Abd-El-Atty B, Hossain MS, Rahman MA, Alamri A, Gupta BB (2018) Efficient quantum information hiding for remote medical image sharing. IEEE Access 6:21075–21083. https://doi.org/10.1109/ACCESS.2018.2820603
Abd El-Latif AA, Abd-El-Atty B, Talha M (2018) Robust encryption of quantum medical images. IEEE Access 6:1073–1081. https://doi.org/10.1109/ACCESS.2017.2777869
Alattar AM et al (2004) IEEE Trans. Image Process 13(8):1147–1156
Arsalan M, Sana AM, Asifullah K (2012) Intelli-gent reversible watermarking in integer wavelet domain for medical images. J Syste Softw 85:883–894 Elsevier
Bao F, Deng R-H, Ooi B-C, Yang Y (2005) Tailored reversible watermarking schemes for authentication of electronic clinical atlas. IEEE Trans Inf Technol Biomed 9(4):554–563
Barton JM (1997) Method and apparatus for embedding authentication information within digital data. U.S. Patent 5:646–997
Belazi A, El-Latif AA, Diaconu A-V, Rhouma R, Belghith S (2017) Chaos-based partial image encryption scheme based on linear fractional and lifting wavelet transforms. Optics and Lasers in Engineering 88:37–50. https://doi.org/10.1016/j.optlaseng.2016.07.010
Caldelli R, Filippini F, Becarelli R (2010) Reversible watermarking techniques: an overview and a classification. EURASIP J Inf Secur, 2010, 2010, Art. no. 134546
Cancellaro M, Battisti F, Carli M, Boato G, De Natale FGB, Neri A (2011) A commutative digital image watermarking and encryption method in the tree structured Haar transform domain. Signal Process, Image Commun 26(1):1–12
Coatrieux G, Le Guillou C, Cauvin J-M, Roux C (Mar. 2009) Reversible watermarking for knowledge digest embedding anreliability control in medical images. IEEE Trans Inf Technol Biomed 13(2):158–165
Coatrieux G, Pan W, Cuppens-Boulahia N, Cuppens F, Roux C (Jan. 2013) Reversible watermarking based on invariant image classification and dynamic histogram shifting. IEEE Trans Inf Forensics Secur 8(1):111–120
Coltuc D (Sep. 2011) Improved embedding for prediction-based reversible watermarking. IEEE Trans Inf Forensics Secur 6(3):873–882
Coltuc D (Jan. 2012) Low distortion transform for reversible watermarking. IEEE Trans Image Process 21(1):412–417
Coltuc D, Caciula I (2009) Stereo embedding by reversible watermarking: Further results. In: Proc. Int. Symp. Signals, Circuits Syst, p 1-4
Cox I, Miller M, Bloom J, Fridrich J, Kalker T (2007) Digital water-marking and steganography. Morgan Kaufmann, San Mateo
Fallahpour M, Sedaaghi MH (2007) High capacity lossless data hiding based on histogram modi_cation. IEICE Electron Exp 4(7):205–210
Fridrich J (2009) Steganography in digital media: principles, algorithms, and applications. Cambridge Univ. Press, Cambridge
Geetha R, Geetha S (2018) Improved reversible data embedding in medical images using I-IWT and pairwise pixel difference expansion. https://doi.org/10.1007/978-981-10-8660-1_45
Goljan M, Fridrich JJ, Du R (2001) Distortion-free data embedding for images. In: Proc. 4th Inf. Hiding Workshop, p 27-41
Hirak KM, Santi PM (2012) Joint robust and reversible watermarking for medical images. 2nd international conference on communication, Computing & Security [ICCCS-2012], Elsevier. Procedia Technol 6:275–282
Honsinger CW, Jones PW, Rabbani M, Stoffel JC (2001) Lossless recovery of an original image containing embedded data. U.S. Patent 6:278–791
Hwang K, Li D (Sep. 2010) Trusted cloud computing with secure resourcesand data coloring. IEEE Internet Comput 14(5):14–22
Jung K, Yoo K (2009) Data hiding method using image interpolation. Comput Stand Interfaces 31:465–470
Kim C, Shin D, Leng L, Yang C-N (2018) Separable reversible data hiding in encrypted halftone image. Displays 55. https://doi.org/10.1016/j.displa.2018.04.002
Kim C, Shin D, Leng L, Yang CN (2018) Lossless data hiding for absolute moment block truncation coding using histogram modification. J Real-Time Image Proc 14:101–114. https://doi.org/10.1007/s11554-016-0641-8
Lee CF, Huang YL (2012) An efficient image interpolation increasing payload in reversible data hiding. Expert Systems with Applications 39:6712–6719 Elsevier
Li X, Yang B, Zeng T (Dec. 2011) Ef_cient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans Image Process 20(12):3524–3533
Li, L, Hossain MS, El-Latif AAA et al. (2017) Cluster Comput. https://doi.org/10.1007/s10586-017-1345-y
Lian S, Liu Z, Ren Z, Wang H (2007) Commutative encryption and watermarking in video compression. IEEE Trans Circuits Syst Video Technol 17(6):774–778
Luo L, Chen Z, Chen M, Zeng X, Xiong Z (2010) Reversible image watermarking using interpolation technique. IEEE Trans Inf Forensics Secur 5(1):187–193
Ni Z, Shi Y-Q, Ansari N, Su W (2003) Reversible data hiding. In Proc .IEEE Int. Symp. Circuits Syst., p II-912_II-915
Parah SA, Ahad F, Sheikh JA, Bhat GM (2017) Hiding clinical information in medical images: a new high capacity and rever-sible data hiding technique. J Biomed Inform 66:214–230
Peng F, Lei Y-Z, Long M, Sun X-M (2011) A reversible watermarking scheme for two-dimensional CAD engineering graphics based on improved difference expansion. Comput Aided Des 43(8):1018–1024
Qin C, Chang C-C, Huang Y-H, Liao L-T (Jul. 2013) An inpaintingassisted reversible steganographic scheme using a histogram shifting mechanism. IEEE Trans Circuits Syst Video Technol 23(7):1109–1118
Qiu Y, Qian Z, Yu L (Jan. 2016) Adaptive reversible data hiding by extending the generalized integer transformation. IEEE Signal Process Lett 23(1):130–134
Sachnev V, Kim HJ, Nam J, Suresh S, Shi YQ (Jul. 2009) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circuits Syst Video Technol 19(7):989–999
Schmitz R, Li S, Grecos C, Zhang X (2012) A new approach to commutative watermarking-encryption. In: Proc. 13th Joint IFIP TC6/TC11Conf. Commun. Multimedia Secur, 2012, p 117-130
Shabir AP, Javaid AS, Bhat GM (2012) Data hiding in ISB planes: a high capacity blind stenographic technique. Proc. of IEEE sponsored Intl. Conference INCOSET, Tiruchirapalli, Tamilnadu, India, p 192–197
Shi YQ ( 2004) Reversible data hiding. In Proc. Int. Workshop Digit.Watermarking, p 1-12
Shi YQ, Ni Z, Zou D, Liang C, Xuan G (2004) Lossless data hiding: fundamentals, algorithms and applications. Proc IEEE Int Symp Circuits Syst 2:33–36
Sivatha Sindhu, S.S., Geetha, S., Marikannan, M. et al. Int. J. Autom. Comput. (2009) 6: 406. https://doi.org/10.1007/s11633-009-0406-y
Subbiah, Geetha & Sindhu, Sivatha & Kamaraj, Nagappan. (2009). Blind image steganalysis based on content independent statistical measures maximizing the specificity and sensitivity of the system. Computers & Security. 28. 683-697. https://doi.org/10.1016/j.cose.2009.03.006
Thodi DM, Rodriguez JJ (Mar. 2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730
Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst 13(8):890–896
Tong X et al (2014) Stereo image coding with histogram-pair based reversible data hiding. In: Proc. Int. Workshop Digital-Forensics Watermarking, 2014, p 201-214
Tsai P, Hu YC, Yeh HL (2009) Reversible image hiding scheme using predictive coding and histogram shifting. Signal Process 89(6):1129–1143
Wang X, Shao C, Xu X, Niu X (Sep. 2007) Reversible data-hiding schemefor 2-D vector maps based on difference expansion. IEEE Trans Inf Forensics Security 2(3):311–320
Wang X, Li X, Yang B, Guo Z (Jun. 2010) Ef_cient generalized integer transform for reversible watermarking. IEEE Signal Process Lett 17(6):567–570
Xuan G, Zhu J, Chen J, Shi YQ, Ni Z, Su W (Dec. 2002) Distortionles data hiding based on integer wavelet transform. Electron Lett 38(25):1646–1648
Xuan G, Shi YQ, Chai P, Cui X, Ni Z, Tong X (2007) Optimum histogram pair based image lossless data embedding. In: Proc. Int.WorkshopDigit. Watermarking, 2007, p 264-278
Xuan G, Shi YQ, Teng J, Tong X, Chai P (2010) Double-threshold reversible data hiding In: Proc IEEE Int Symp Circuits Syst, p 1129-1132
Yan X, Wang S, Abd El-Latif A, Niu X (2013) New approaches for efficient information hiding-based secret image sharing schemes. SIViP 9. https://doi.org/10.1007/s11760-013-0465-y
Yi S, Zhou Y, Hua Z (2018) Reversible data hiding in encrypted images using adaptive block-level prediction-error expansion. Signal Process Image Commun 64. https://doi.org/10.1016/j.image.2018.03.001
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Geetha, R., Geetha, S. Embedding electronic patient information in clinical images: an improved and efficient reversible data hiding technique. Multimed Tools Appl 79, 12869–12890 (2020). https://doi.org/10.1007/s11042-019-08484-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-019-08484-2