Skip to main content

Advertisement

Log in

A centroid based vector quantization reversible data hiding technique

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a reversible data hiding scheme that exploits the centroid formula. Specifically, we use it to define a centroid boundary vector and a centroid state codebook CSCB. Initially, our centroid boundary vectors and CSCBs are the same as the side match vector quantization (SMVQ) algorithm’s boundary vectors and state codebooks SCBs. For each VQ index, the proposed scheme exploits the centroid formula to update its centroid boundary vector and the corresponding CSCB. The updating is coupled with a heuristic to select the best state codebook (i.e., either SCB or CSCB) for each VQ index, which generates a highly compressible distribution of index values. Our experimental results show that the proposed scheme can embed n = 1, 2, 3, and 4 bit per index (bpi) at bit rates of 0.332, 0.394, 0.457, and 0.519 bit per pixel (bpp), respectively, for the main codebook size N = 256. These results confirm that the proposed scheme improves recent VQ and SMVQ based reversible data hiding schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chang CC, Kieu TD, Wu WC (2009) A lossless data embedding technique by joint neighboring coding. Pattern Recogn 42(7):1597–1603

    Article  MATH  Google Scholar 

  2. Chang CC, Nguyen TS, Lin CC (2013) A novel VQ-based reversible data hiding scheme by using hybrid encoding strategies. J Syst Softw 86:389–402

    Article  Google Scholar 

  3. Cheng PH, Chang KC, Liu CL (2017) A reversible data hiding scheme for VQ indices using histogram shifting of prediction errors. Multimed Tools Appl 76(4):6031–6050

    Article  Google Scholar 

  4. Davis RM (1978) The data encryption standard in perspective. IEEE Commun Soc Mag 16(6):5–9

    Article  Google Scholar 

  5. Delp E, Mitchell O (1979) Image Compression Using Block Truncation Coding. IEEE Trans Commun 27(9):1335–1342

    Article  Google Scholar 

  6. Gray RM (1984) Vector quantization. IEEE ASSP Mag 1(2):4–29

    Article  Google Scholar 

  7. He W, Zhou K, Cai J, Wang L, Xiong G (2017) Reversible data hiding using multi-pass pixel value ordering and prediction-error expansion. J Vis Commun Image Represent 49:351–360

    Article  Google Scholar 

  8. Hou D, Wang H, Zhang W, Yu N (2018) Reversible data hiding in JPEG image based on DCT frequency and block selection. Signal Process 148:41–47

    Article  Google Scholar 

  9. Hsieh CH, Tsai JC (1996) Lossless compression of VQ index with search order coding. IEEE Trans Image Process 5(11):1579–1582

    Article  Google Scholar 

  10. Jin X, Yin S, Liu N, Li X, Zhao G, Ge S (2017) Color image encryption in non-RGB color spaces. Multimed Tools Appl 77(12):15851–15873

    Article  Google Scholar 

  11. Khan MK, Zhang J, Tian L (2007) Chaotic secure content-based hidden transmission of biometric templates. Chaos, Solitons Fractals 32:1749–1759

    Article  Google Scholar 

  12. Kim T (1992) Side match and overlap match vector quantizers for images. IEEE Trans Image Process 1(2):170–185

    Article  MathSciNet  Google Scholar 

  13. Lema M, Mitchell O (1984) Absolute Moment Block Truncation Coding and Its Applications to Color Images. IEEE Trans Commun 32(10):1148–1157

    Article  Google Scholar 

  14. Liao X, Li K, Yin J (2017) Separable data hiding in encrypted image based on compressive sensing and discrete fourier transform. Multimed Tools Appl 76(20):20739–20753

    Article  Google Scholar 

  15. Liao X, Qin Z, Ding L (2017) Data embedding in digital images using critical functions. Signal Process Image Commun 58:146–156

    Article  Google Scholar 

  16. Liao X, Yin J, Guo S, Li X, Sangaiah AK (2018) Medical JPEG image steganography based on preserving inter-block dependencies. Comput Electr Eng 67:320–329

    Article  Google Scholar 

  17. Liao X, Guo S, Yin J, Wang H, Li X, Sangaiah AK (2018) New cubic reference table based image steganography. Multimed Tools Appl 77(8):10033–10050

    Article  Google Scholar 

  18. Lin CC, Liu XL, Yuan SM (2015) Reversible data hiding for VQ-compressed images based on search order coding and state-codebook mapping. Inf Sci 293:314–326

    Article  Google Scholar 

  19. Linde Y, Buzo A, Gray RM (1980) An algorithm for vector quantizer design. IEEE Trans Commun 28(1):84–95

    Article  Google Scholar 

  20. Liu Y, Chang CC (2018) Reversible data hiding for JPEG images employing all quantized non-zero AC coefficients. Displays 51:51–56

    Article  Google Scholar 

  21. Liu Y, Chang CC, Nguyen TS (2016) High capacity turtle shell-based data hiding. IET Image Process 10(2):130–137

    Article  Google Scholar 

  22. Liu JN, Q Zhou, YL Hu, JY Wei (2017) A new SMVQ based reversible data hiding scheme using state codebook sorting, In Proceedings of the International Conference on Image and Graphics. 539–550.

  23. Manohar K, Kieu TD (2018) An SMVQ-based reversible data hiding technique exploiting side match distortion. Multimed Tools Appl 77(10):11727–11750

    Article  Google Scholar 

  24. Pan Z, Wang L (2018) Novel reversible data hiding scheme for two stage VQ compressed images on search order coding. J Vis Commun Image Represent 50:186–198

    Article  Google Scholar 

  25. Qin C, Chang CC, Chiu YP (2014) A novel joint data hiding and compression scheme based on SMVQ and image inpainting. IEEE Trans Image Process 23(4):969–978

    MathSciNet  MATH  Google Scholar 

  26. Rahmani P, Dastghaibyfard G (2018) An efficient histogram based index mapping mechanism for reversible data hiding in VQ compressed images. Inf Sci 435:224–239

    Article  MathSciNet  Google Scholar 

  27. Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-key cryptosystems. Commun ACM 21(2):120–126

    Article  MathSciNet  MATH  Google Scholar 

  28. Run RS, Horng SJ, Lin WH, Kao TW, Fan P, Khan MK (2011) An efficient wavelet-tree-based watermarking method. Expert Syst Appl 38:14357–14366

    Article  Google Scholar 

  29. Sarreshtedari S, Akhaee MA (2014) One-third probability embedding: a new ±1 histogram compensating image least significant bit steganography scheme. IET Image Process 8(2):78–89

    Article  Google Scholar 

  30. Wang WJ, Huang CT, Liu CM, Su PC, Wang SJ (2013) Data embedding for vector quantization image processing on the basis of adjoining state-codebook mapping. Inf Sci 246:69–82

    Article  MathSciNet  Google Scholar 

  31. Wang L, Pan Z, Zhu R (2017) A novel reversible data hiding scheme by introducing current state codebook and prediction strategy for joint neighbouring coding. Multimed Tools Appl 76(24):26153–26176

    Article  Google Scholar 

  32. Wang L, Pan Z, Zhu R (2017) A novel reversible data hiding scheme using SMVQ prediction index and multi-layer embedding. Multimed Tools Appl 76(24):26225–26248

    Article  Google Scholar 

  33. Weinberger MJ, Seroussi G, Sapiro G (1996) LOCO-I: a low complexity, context-based, lossless image compression algorithm. Data Comp Conf, Snowbird, UT:140–149

  34. Weng S, Pan JS, Li L (2016) Reversible data hiding based on an adaptive pixel-embedding strategy and two-layer embedding. Inf Sci 369:144–159

    Article  Google Scholar 

  35. Xia B, Wang A, Chang CC, Liu L (2018) Reversible data hiding for VQ indices using hierarchical state codebook mapping. Multimed Tools Appl 77(16):20519–20533

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to The Duc Kieu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manohar, K., Kieu, T.D. A centroid based vector quantization reversible data hiding technique. Multimed Tools Appl 78, 25273–25298 (2019). https://doi.org/10.1007/s11042-019-7631-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7631-3

Keywords

Navigation