Abstract
Bone age assessment (BAA) is a method or technique that helps in predicting the age of a person whose age is unavailable and can also be used to find growth disorders if any. The automated bone age assessment system (ABAA) depends heavily on the efficiency of the feature extraction stage and the accuracy of a successive classification stage of the system. This paper has presented the implementation and analysis of feature extraction methods like Bag of features (BoF), Histogram of Oriented Gradients (HOG), and Texture Feature Analysis (TFA) methods on the segmented phalangeal region of interest (PROI) images and segmented radius-ulna region of interest (RUROI) images. Artificial Neural Networks (ANN) and Random Forest classifiers are used for evaluating classification problems. The experimental results obtained by BoF method for feature extraction along with Random Forest for classification have outperformed preceding techniques available in the literature. The mean error (ME) accomplished is 0.58 years and RMSE value of 0.77 years for PROI images and mean error of 0.53 years and RMSE of 0.72 years was achieved for RUROI images. Additionally results also proved that prior knowledge of gender of the person gives better results. The dataset contains radiographs of the left hand for an age range of 0-18 years.





Similar content being viewed by others
References
Bay H, Tuytelaars T, Van Gool L (2006) SURF: speeded up robust features. Springer, Berlin, pp 404–417. https://doi.org/10.1007/11744023_32
Breiman L (2001) Random forests. Machine Learning 45(1):5–32
Bui TD, Lee JJ, Shin J (2019) Incorporated region detection and classification using deep convolutional networks for bone age assessment. Artif Intell Med 97:1–8
Csurka G, Dance CR, Fan L, Willamowski J, Bray C (2004) Visual categorization with bags of keypoints. In: Workshop on statistical learning in computer vision, ECCV, (2004), pp 1–22
Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol 1, pp 886–893, DOI https://doi.org/10.1109/CVPR.2005.177
Gertych A, Zhang A, Sayre J, Pospiech-Kurkowska S, Huang H (2007) Bone age assessment of children using a digital hand atlas. Computerized Medical Imaging and Graphics 31(4):322–331 https://doi.org/10.1016/j.compmedimag.2007.02.012. http://www.sciencedirect.com/science/article/pii/S0895611107000274, computer-aided Diagnosis (CAD) and Image-guided Decision Support
Gilsanz V, Ratib O (2005) Hand bone age: A digital atlas of skeletal maturity. Springer Science & Business Media
Giordano D, Spampinato C, Scarciofalo G, Leonardi R (2010) An automatic system for skeletal bone age measurement by robust processing of carpal and epiphysial/metaphysial bones. IEEE Trans Instrum Meas 59(10):2539–2553. https://doi.org/10.1109/TIM.2010.2058210
Giordano D, Kavasidis I, Spampinato C (2016) Modeling skeletal bone development with hidden markov models. Comput Methods Programs Biomed 124:138–147
Gonzalez RC, Woods RE, Eddins SL (2004) Digital image processing using MATLAB. Pearson Education, India
Greulich WW, Pyle SI (1959) Radiographic atlas of skeletal development of the hand and wrist. The American Journal of the Medical Sciences 238(3)
Güraksin G E, Uğuz H, Baykan ÖK (2016) Bone age determination in young children (newborn to 6 years old) using support vector machines. Turk J Elec Eng & Comp Sci 24(3):1693–1708
Harmsen M, Fischer B, Schramm H, Seidl T, Deserno TM (2013) Support vector machine classification based on correlation prototypes applied to bone age assessment. IEEE J Biomed Health Inform 17(1):190–197. https://doi.org/10.1109/TITB.2012.2228211
Haykin S (1998) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall PTR, Upper Saddle River
Hsieh CW, Jong TL, Tiu CM (2007) Bone age estimation based on phalanx information with fuzzy constrain of carpals. Med Biol Eng Comput 45(3):283–295. https://doi.org/10.1007/s11517-006-0155-9
Hsieh CW, Liu TC, Jong TL, Tiu CM (2010) A fuzzy-based growth model with principle component analysis selection for carpal bone-age assessment. Med Biol Eng Comput 48(6):579–588. https://doi.org/10.1007/s11517-010-0609-y
Kashif M, Jonas S, Haak D, Deserno TM (2015) Bone age assessment meets SIFT. ProcSPIE 9414:9414–9414 – 7 . https://doi.org/10.1117/12.2074572
Kashif M, Deserno TM, Haak D, Jonas S (2016) Feature description with SIFT, SURF, BRIEF, BRISK, or FREAK? a general question answered for bone age assessment. Comput Biol Med 68(Supplement C):67–75 . https://doi.org/10.1016/j.compbiomed.2015.11.006. http://www.sciencedirect.com/science/article/pii/S0010482515003741
Lee H, Tajmir S, Lee J, Zissen M, Yeshiwas BA, Alkasab TK, Choy G, Do S (2017) Fully automated deep learning system for bone age assessment. J Digit Imaging 30(4):427–441. https://doi.org/10.1007/s10278-017-9955-8
Liu J, Qi J, Liu Z, Ning Q, Luo X (2008) Automatic bone age assessment based on intelligent algorithms and comparison with tw3 method. Comput Med Imaging Graph 32(8):678–684. https://doi.org/10.1016/j.compmedimag.2008.08.005. http://www.sciencedirect.com/science/article/pii/S0895611108000827
Loizou CP, Theofanous C, Pantziaris M, Kasparis T (2014) Despeckle filtering software toolbox for ultrasound imaging of the common carotid artery. Comput Methods Programs Biomed 114(1):109–124 . https://doi.org/10.1016/j.cmpb.2014.01.018. http://www.sciencedirect.com/science/article/pii/S0169260714000327
Pietka E, McNitt-Gray MF, Kuo ML, Huang HK (1991) Computer-assisted phalangeal analysis in skeletal age assessment. IEEE Trans Med Imaging 10(4):616–620. https://doi.org/10.1109/42.108597
Pietka E, Kaabi L, Kuo ML, Huang HK (1993) Feature extraction in carpal-bone analysis. IEEE Trans Med Imaging 12(1):44–49. https://doi.org/10.1109/42.222665
Pietka E, Pospiech-Kurkowska S, Gertych A, Cao F (2003) Integration of computer assisted bone age assessment with clinical pacs. Comput Med Imaging Graph 27(2):217–228 . https://doi.org/10.1016/S0895-6111(02)00076-9. http://www.sciencedirect.com/science/article/pii/S0895611102000769, picture Archiving and Communication Systems 20 Years Later
Rucci M, Coppini G, Nicoletti I, Cheli D, Valli G (1995) Automatic analysis of hand radiographs for the assessment of skeletal age: A subsymbolic approach. Comput Biomed Res 28(3):239–256 . https://doi.org/10.1006/cbmr.1995.1016. http://www.sciencedirect.com/science/article/pii/S0010480985710166
Seal A, Bhattacharjee D, Nasipuri M (2016) Human face recognition using random forest based fusion of à-trous wavelet transform coefficients from thermal and visible images. AEU - International Journal of Electronics and Communications 70 (8):1041–1049 . https://doi.org/10.1016/j.aeue.2016.04.016. http://www.sciencedirect.com/science/article/pii/S1434841116301418
Seok J, Kasa-Vubu J, DiPietro M, Girard A (2016) Expert system for automated bone age determination. Expert Syst Appl 50:75–88
Simu S, Lal S (2017) Automated bone age assessment using bag of features and random forests. In: 2017 International Conference on Intelligent Sustainable Systems (ICISS), pp 911–915, https://doi.org/10.1109/ISS1.2017.8389311
Simu S, Lal S, Fadte K, Harlapur A (2017) Fully automatic segmentation of phalanges from hand radiographs for bone age assessment. Comput Methods Biomech Biomed Eng Imaging Vis 0(0):1–26. https://doi.org/10.1080/21681163.2017.1416491
Simu S, Lal S, Nagarsekar P, Naik A (2017) Fully automatic roi extraction and edge-based segmentation of radius and ulna bones from hand radiographs. Biocybern Biomed Eng 37(4):718–732 . https://doi.org/10.1016/j.bbe.2017.07.004. http://www.sciencedirect.com/science/article/pii/S0208521617300918
Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R (2017) Deep learning for automated skeletal bone age assessment in x-ray images. Med Image Anal 36(Supplement C):41–51 . https://doi.org/10.1016/j.media.2016.10.010. http://www.sciencedirect.com/science/article/pii/S1361841516301840
Tanner JM, Whitehouse R, Marshall W, Healty M, Goldstein H (1975) Assessment of skeleton maturity and maturity and prediction of adult height (TW2 Method)
Tanner J, Healy M, Goldstein H, Cameron N (2001) Assessment of skeletal maturity and prediction of adult height: TW3 Method, Saunders
Thodberg HH, Kreiborg S, Juul A, Pedersen KD (2009) The bonexpert method for automated determination of skeletal maturity. IEEE Trans Med Imaging 28(1):52–66. https://doi.org/10.1109/TMI.2008.926067
Tristán A, Arribas JI (2005) A radius and ulna skeletal age assessment system. In: IEEE Workshop on Machine Learning for Signal Processing, 2005. IEEE, pp 221–226
Tristan-Vega A, Arribas JI (2008) A radius and ulna TW3 bone age assessment system. IEEE Trans Biomed Eng 55(5):1463–1476
UNICEF (2011) The situation of children in India: a profile. New Delhi: United Nations Children’s Fund/India
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Simu, S., Lal, S. A framework for automated bone age assessment from digital hand radiographs. Multimed Tools Appl 79, 15747–15764 (2020). https://doi.org/10.1007/s11042-020-08816-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-020-08816-7