Abstract
Entropies are among the most popular and promising complexity measures for biological signal analyses. Various types of entropy measures exist, including Shannon entropy, Kolmogorov entropy, approximate entropy (ApEn), sample entropy (SampEn), multiscale entropy (MSE), and so on. A fundamental question is which entropy should be chosen for a specific biological application. To solve this issue, we focus on scaling laws of different entropy measures and introduce an ensemble forecasting framework to find the connections among them. One critical component of the ensemble forecasting framework is the scale-dependent Lyapunov exponent (SDLE), whose scaling behavior is found to be the richest among all the entropy measures. In fact, SDLE contains all the essential information of other entropy measures, and can act as a unifying multiscale complexity measure. Furthermore, SDLE has a unique scale separation property to aptly deal with nonstationarity and characterize high-dimensional and intermittent chaos. Therefore, SDLE can often be the first choice for exploratory studies in biology. The effectiveness of SDLE and the ensemble forecasting framework is illustrated by considering epileptic seizure detection from EEG.
Similar content being viewed by others
References
Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 88, 2297–2301 (1991)
Cavanaugh, J.T., Guskiewicz, K.M., Giuliani, C., Marshal, S., Mercer, V., Stergiou, N.: Detecting altered postural-control after cerebral concussion in athletes with normal postural stability. Br. J. Sports Med. 39, 805–811 (2005)
Sosnoff, J.J., Broglio, S.P., Shin, S.H., Ferrara, M.S.: Previous mild traumatic brain injury and postural-control dynamics. J. Athl. Train. 46, 85–91 (2011)
National Center for Injury Prevention and Control: Report to Congress on Mild Traumatic Brain Injury in the United States: Steps to Prevent a Serious Public Health Problem. Centers for Disease Control and Prevention, Atlanta (2003)
Finkelstein, E.A., Corso, P.S., Miller, T.R.: The Incidence and Economic Burden of Injuries in the United States. Oxford University Press, New York (2006)
Aubry, M., Cantu, R., Dvorak, J., Graf-Baumann, T., Johnston, K.M., Kelly, J., Lovell, M., McCrory, P., Meeuwiasse, W.H., Schamasch, P., Concussion in Sport (CIS) Group: Summary and agreement statement of the 1st international symposium on concussion in sport. Clin. J. Sport Med. 12, 6–11 (2002)
Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol., Heart Circ. Physiol. 278, H2039–H2049 (2000)
McCrory, P., Meeuwisse, W., Johnston, K., Dvorak, J., Aubry, M., Molloy, M., Cantu, R.: Consensus statement on concussion in sport: The 3rd International Conference on Concussion in Sport held in Zurich, November 2008. J. Athl. Train. 44, 434–448 (2009)
Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)
Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28, 2591–2593 (1983)
Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of biological signals. Phys. Rev. E 71, 021906 (2005)
Cao, Y.H., Tung, W.W., Gao, J.B., Protopopescu, V.A., Hively, L.M.: Detecting dynamical changes in time series using the permutation entropy. Phys. Rev. E 70, 046217 (2004)
Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory 22, 75–81 (1976)
Hu, J., Gao, J.B., Principe, J.C.: Analysis of biomedical signals by the Lempel-Ziv complexity: The effect of finite data size. IEEE Trans. Biomed. Eng. 53, 2606–2609 (2006)
Gao, J.B., Cao, Y.H., Tung, W.W., Hu, J.: Multiscale Analysis of Complex Time Series—Integration of Chaos and Random Fractal Theory, and Beyond. Wiley, New York (2007)
Gao, J.B., Hu, J., Tung, W.-W., Cao, Y.H.: Distinguishing chaos from noise by scale-dependent Lyapunov exponent. Phys. Rev. E 74, 066204 (2006)
Andrzejak, R.G., Lehnertz, K., Rieke, C., Mormann, F., David, P., Elger, C.E.: Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E 64, 061907 (2001)
Adeli, H., Ghosh-Dastidar, S., Dadmehr, N.: A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans. Biomed. Eng. 54, 205–211 (2007)
Gao, J.B., Hu, J., Tung, W.W.: Complexity measures of brain wave dynamics. Cogn. Neurodyn. 5, 171–182 (2011)
Gao, J.B., Hu, J., Tung, W.W.: Facilitating joint chaos and fractal analysis of biosignals through nonlinear adaptive filtering. PLoS ONE 6(9), e24331 (2011). doi:10.1371/journal.pone.0024331
Hu, J., Gao, J.B., Wang, X.S.: Multifractal analysis of sunspot time series: The effects of the 11-year cycle and Fourier truncation. J. Stat. Mech. 2009/02/P02066
Gao, J.B., Sultan, H., Hu, J., Tung, W.W.: Denoising nonlinear time series by adaptive filtering and wavelet shrinkage: A comparison. IEEE Signal Process. Lett. 17, 237–240 (2010)
Tung, W.W., Gao, J.B., Hu, J., Yang, L.: Recovering chaotic signals in heavy noise environments. Phys. Rev. E 83, 046210 (2011)
Gao, J.B., Hu, J., Buckley, T., White, K., Hass, C.: Shannon and Renyi entropies to classify effects of mild traumatic brain injury on postural sway. PLoS ONE 6(9), e24446 (2011). doi:10.1371/journal.pone.0024446
Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45, 712–716 (1980)
Takens, F.: Detecting strange attractors in turbulence. In: Rand, D.A., Young, L.S. (eds.) Dynamical Systems and Turbulence, Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer, Berlin (1981)
Sauer, T., Yorke, J.A., Casdagli, M.: Embedology. J. Stat. Phys. 65, 579–616 (1991)
Liebert, W., Pawelzik, K., Schuster, H.G.: Optimal embedding of chaotic attractors from topological considerations. Europhys. Lett. 14, 521–526 (1991)
Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403–3411 (1992)
Gao, J.B., Zheng, Z.M.: Local exponential divergence plot and optimal embedding of a chaotic time series. Phys. Lett. A 181, 153–158 (1993)
Gao, J.B., Zheng, Z.M.: Direct dynamical test for deterministic chaos and optimal embedding of a chaotic time series. Phys. Rev. E 49, 3807–3814 (1994)
Atmanspacher, H., Scheingraber, H.: A fundamental link between system theory and statistical mechanics. Found. Phys. 17, 939–963 (1987)
Gaspard, P., Wang, X.J.: Noise, chaos, and (ε,τ)-entropy per unit time. Phys. Rep. 235, 291–343 (1993)
Cohen, A., Procaccia, I.: Computing the Kolmogorov entropy from time series of dissipative and conservative dynamical systems. Phys. Rev. A 31, 1872–1882 (1985)
Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985)
Gao, J.B., Hu, J., Tung, W.W.: Multiscale entropy analysis of biological signals: A fundamental bi-scaling law. Europhys. Lett. (submitted)
Lorenz, E.Z.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)
Gao, J.B., Tung, W.W., Hu, J.: Quantifying dynamical predictability: The pseudo-ensemble approach (in honor of Professor Andrew Majda’s 60th birthday). Chin. Ann. Math., Ser. B 30, 569–588 (2009)
Kleeman, R.: Measuring dynamical prediction utility using relative entropy. J. Atmos. Sci. 59, 2057–2072 (2002)
Abramov, R., Majda, A., Kleeman, R.: Information theory and predictability for low frequency variability. J. Atmos. Sci. 62, 65–87 (2005)
Haven, K., Majda, A., Abramov, R.: Quantifying predictability through information theory: Small sample estimation in a non-Gaussian framework. J. Comput. Phys. 206, 334–362 (2005)
Gao, J.B., Hwang, S.K., Liu, J.M.: When can noise induce chaos? Phys. Rev. Lett. 82, 1132–1135 (1999)
Gao, J.B., Chen, C.C., Hwang, S.K., Liu, J.M.: Noise-induced chaos. Int. J. Mod. Phys. B 13, 3283–3305 (1999)
Hwang, K., Gao, J.B., Liu, J.M.: Noise-induced chaos in an optically injected semiconductor laser. Phys. Rev. E 61, 5162–5170 (2000)
Gao, J.B., Hu, J., Tung, W.W., Cao, Y.H., Sarshar, N., Roychowdhury, V.P.: Assessment of long range correlation in time series: How to avoid pitfalls. Phys. Rev. E 73, 016117 (2006)
Gao, J.B., Hu, J., Tung, W.W., Zheng, Y.: Multiscale analysis of economic time series by scale-dependent Lyapunov exponent. Quant. Finance (2011). doi:10.1080/14697688.2011.580774
Gao, J.B., Hu, J., Mao, X., Tung, W.W.: Detecting low-dimensional chaos by the “noise titration” technique: Possible problems and remedies. Chaos Solitons Fractals (in press)
Hu, J., Gao, J.B., Tung, W.W.: Characterizing heart rate variability by scale-dependent Lyapunov exponent. Chaos 19, 028506 (2009)
Hu, J., Gao, J.B., Tung, W.W., Cao, Y.H.: Multiscale analysis of heart rate variability: A comparison of different complexity measures. Ann. Biomed. Eng. 38, 854–864 (2010)
Cellucci, C.J., Albano, A.M., Rapp, P.E., Pittenger, R.A., Josiassen, R.C.: Detecting noise in a time series. Chaos 7, 414–422 (1997)
Hu, J., Gao, J.B., White, K.D.: Estimating measurement noise in a time series by exploiting nonstationarity. Chaos Solitons Fractals 22, 807–819 (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gao, J., Hu, J. & Tung, Ww. Entropy measures for biological signal analyses. Nonlinear Dyn 68, 431–444 (2012). https://doi.org/10.1007/s11071-011-0281-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-011-0281-2