Abstract
Let \(x_{n,k}^{(\alpha ,\beta )}\), \(k=1,\ldots ,n\), be the zeros of Jacobi polynomials \(P_{n}^{(\alpha ,\beta )}(x)\) arranged in decreasing order on \((-1,1)\), where \(\alpha ,\beta >-1\), and \(\theta _{n,k}^{(\alpha ,\beta )}=\arccos x_{n,k}^{(\alpha ,\beta )}\). Gautschi, in a series of recent papers, conjectured that the inequalities
and
hold for all \(n\geq 1\), \(k=1,\ldots ,n\), and certain values of the parameters \(\alpha \) and \(\beta \). We establish these conjectures for large domains of the \((\alpha ,\beta )\)-plane by using a Sturmian approach.
Similar content being viewed by others
References
Ahmed, S., Laforgia, A., Muldoon, M.E.: On the spacing of the zeros of some classical orthogonal polynomials. J. London. Math. Soc. 25(2), 246–252 (1982)
Dimitrov, D.K., Sri Ranga, A.: Zeros of a family of hypergeometric para-orthogonal polynomials on the unit circle. Math. Nachr. 286, 1778–1791 (2013)
Driver, K., Jordaan, K.: Bounds for extreme zeros of some classical orthogonal polynomials. J. Approx. Theory 164, 1200–1204 (2012)
Gautschi, W., Leopardi, P.: Conjectured inequalities for Jacobi polynomials and their largest zeros. Numer. Algoritm. 45, 217–230 (2007)
Gautschi, W.: On a conjectured inequality for the largest zero of Jacobi polynomials. Numer. Algoritm. 49, 195–198 (2008)
Gautschi, W.: On conjectured inequalities for zeros of Jacobi polynomials. Numer. Algoritm. 50, 93–96 (2009)
Gautschi, W.: New conjectured inequalities for zeros of Jacobi polynomials. Numer. Algoritm. 50, 293–296 (2009)
Gautschi, W.: Remark on “New conjectured inequalities for zeros of Jacobi polynomials” by Walter Gautschi. Numer. Algorithm. 50, 293–296 (2009), Numer. Algoritm. 57, 511–511 (2011)
Hesse, K., Sloan, I.H.: Worst-case errors in a Sobolev space setting for cubature over the sphere \(\mathbb {S}^{2}\). Bull. Aust. Math. Soc. 71, 81–105 (2005)
Hesse, K., Sloan, I.H.: Cubature over the sphere \(\mathbb {S}^{2}\) in Sobolev spaces of arbitrary order. J. Approx. Theory 141, 118–133 (2006)
Koumandos, S.: On a conjectured inequality of Gautschi and Leopardi for Jacobi polynomials. Numer. Algoritm. 44, 249–253 (2007)
Leopardi, P.C.: Positive weight quadrature on the sphere and monotonicities of Jacobi polynomials. Numer. Algoritm. 45, 75–87 (2007)
Szegő, G.: Orthogonal Polynomials, 4th edn. Amer. Math. Soc. Coll. Publ., Providence (1975)
Author information
Authors and Affiliations
Corresponding author
Additional information
Research supported by FAPESP, CNPq and CAPES
Rights and permissions
About this article
Cite this article
Lun, Y.C., Rafaeli, F.R. Inequalities for zeros of Jacobi polynomials via Sturm’s theorem: Gautschi’s conjectures. Numer Algor 67, 549–563 (2014). https://doi.org/10.1007/s11075-013-9807-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-013-9807-7