Abstract
In this paper, two splitting extragradient-like algorithms for solving strongly pseudomonotone equilibrium problems given by a sum of two bifunctions are proposed. The convergence of the proposed methods is analyzed and the R-linear rate of convergence under suitable assumptions on bifunctions is established. Moreover, a noisy data case, when a part of the bifunction is contaminated by errors, is studied. Finally, some numerical experiments are given to demonstrate the efficiency of our algorithms.
Similar content being viewed by others
References
Alizadeh, S., Moradlou, F.: A strong convergence theorem for equilibrium problems and generalized hybrid mappings. Mediterr. J. Math. 13, 379–390 (2016)
Anh, P.K., Hieu, D.V.: Parallel hybrid iterative methods for variational inequalities, equilibrium problems, and common fixed point problems. Vietnam J. Math. 44(2), 351–374 (2016)
Hieu, D.V., Muu, L.D., Anh, P.K.: Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings. Numer. Algor. 73, 197–217 (2016)
Antipin, A.S.: Gradient approach of computing fixed points of equilibrium problems. J. Glob. Optim. 24, 285–309 (2002)
Briceño-Arias, L. M.: A Douglas-Rachford splitting method for solving equilibrium problems. Nonlinear Anal. 75, 6053–6059 (2012)
Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Student 63, 123–146 (1994)
Borwein, J.M., Lewis, A.S.: Convex analysis and nonlinear optimization: theory and examples. Springer, New York (2000)
Bello Cruz, J.Y., Millán, R.D.: A direct splitting method for nonsmooth variational inequalities. J. Optim. Theory Appl. 161, 729–737 (2014)
Combettes, L.P., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)
Contreras, J., Klusch, M., Krawczyk, J.B.: Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets. IEEE Trans. Power Syst. 19(1), 195–206 (2004)
Dinh, B.V., Muu, L.D.: A projection algorithm for solving pseudomonotone equilibrium problems and it’s application to a class of bilevel equilibria. Optimization 64(3), 559–575 (2015)
Flam, S.D., Antipin, A.S.: Equilibrium programming using proximal-like algorithms. Math. Prog. 78, 29–41 (1997)
Giannessi, F., Maugeri, A., Pardalos, P.M.: Equilibrium problems: nonsmooth optimization and variational inequality models. Kluwer, Dordrecht (2004)
Iiduka, H., Yamada, I.: An ergodic algorithm for the power-control games for CDMA data networks. J. Math. Model. Alg. 8, 1–18 (2009)
Iiduka, H.: Fixed point optimization algorithm and its application to power control in CDMA data networks. Math. Program. 133, 227–242 (2012)
Khanh, P.D., Vuong, P.T.: Modified projection method for strongly pseudomonotone variational inequalities. J. Glob. Optim. 58(2), 341–350 (2014)
Konnov, I.V.: Combined relaxation methods for variational inequalities. Springer, Berlin (2000)
Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)
Mastroeni, G.: Gap function for equilibrium problems. J. Glob. Optim. 27, 411–426 (2004)
Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)
Moudafi, A.: On the convergence of splitting proximal methods for equilibrium problems in Hilbert spaces. J. Math. Anal. Appl. 359, 508–513 (2009)
Muu, L.D., Quoc, T.D.: Regularization algorithms for solving monotone Ky Fan inequalities with application to a Nash-Cournot equilibrium model. J. Optim. Theory Appl. 142, 185–204 (2009)
Nguyen, T.T.V., Strodiot, J.J.: The interior proximal extragradient method for solving equilibrium problems. J. Glob. Optim. 44(2), 175–192 (2009)
Noor, M.A.: Some algorithms for general monotone mixed variational inequalities. Math. Comput. Model. 29(7), 1–9 (1999)
Noor, M.A.: Iterative schemes for quasimonotone mixed variational inequalities. Optimization 50, 29–44 (2001)
Plubtieng, S., Punpaeng, R.: A general iterative method for equilibrium problems and fixed points problems in Hilbert spaces. J. Math. Anal. Appl. 336, 455–469 (2007)
Quoc, T.D., Anh, P.N., Muu, L.D.: Dual extragradient algorithms extended to equilibrium problems. J. Glob. Optim. 52(1), 139–159 (2012)
Quoc, T.D., Muu, L.D., Nguyen, V.H.: Extragradient algorithms extended to equilibrium problems. Optimization 57(6), 749–776 (2008)
Rockafellar, R.T.: Convex analysis. Princeton University Press, Princeton, NJ (1970)
Strodiot, J.J., Nguyen, T.T.V., Nguyen, V.H.: A new class of hybrid extragradient algorithms for solving quasi-equilibrium problems. J. Glob. Optim. 56, 373–397 (2013)
Svaiter, B.F.: On weak convergence of the Douglas-Rachford method. SIAM J. Control Optim. 49, 280–287 (2011)
Takahashi, S., Takahashi, W.: Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space. Nonlinear Anal. 69, 1025–1033 (2008)
Vuong, P.T., Strodiot, J.J., Nguyen, V.H.: Extragradient methods and linesearch algorithms for solving Ky Fan inequalities and fixed point problems. J. Optim. Theory Appl. 155(2), 605–627 (2012)
Xu, H.K.: Iterative algorithms for nonlinear operators. J. London Math. Soc. 66(2), 240–256 (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pham, K.A., Trinh, N.H. Splitting extragradient-like algorithms for strongly pseudomonotone equilibrium problems. Numer Algor 76, 67–91 (2017). https://doi.org/10.1007/s11075-016-0244-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-016-0244-2
Keywords
- Equilibrium problem
- Strong pseudomonotonicity
- Lipschitz-type continuity
- Splitting-up technique
- Parallel computation
- Error estimates