Skip to main content

Advertisement

Log in

Topological order in 1D Cluster state protected by symmetry

  • Letter to the Editor
  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We demonstrate how to construct the Z 2 × Z 2 global symmetry which protects the ground state degeneracy of cluster states for open boundary conditions. Such a degeneracy ultimately arises because the set of stabilizers do not span a complete set of integrals of motion of the cluster state Hamiltonian for open boundary conditions. By applying control phase transformations, our construction makes the stabilizers into the Pauli operators spanning the qubit Hilbert space from which the degeneracy comes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Briegel H.J., Raussendorf R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)

    Article  ADS  Google Scholar 

  2. Raussendorf R., Browne D.E., Briegel H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68(1–32), 022312 (2003)

    Article  ADS  Google Scholar 

  3. Nielsen M.A.: Cluster-state quantum computation. Rep. Math. Phys. 57, 147–161 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Nielsen M., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  5. Farhi, E., Goldstone, J., Gutmann, S., Sipse, M.: Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106v1 (2000).

  6. Das Sarma, S., Freedman, M., Nayak, C.: Topologically protected qubits from a possible non-abelian fractional quantum Hall state. Phys. Rev. Lett. 94, 166802 4 pp (2005)

    Article  ADS  Google Scholar 

  7. Nayak C., Simon S.H., Stern A., Freedman M., Das Sarma S.: Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Wen X.: Topological orders and edge excitations in fractional quantum Hall states. Adv. Phys. 44, 405–473 (1995)

    Article  ADS  Google Scholar 

  9. Affleck I. et al.: Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59, 799–802 (1987)

    Article  ADS  Google Scholar 

  10. Kitaev, A., Laumann, C.: Topological phases and quantum computation, arXiv:0904.2771 (2009)

  11. Brown, B.J., Son, W., Kraus, C.V., Fazio, R., Vedral, V.: Generating topological order from a two-dimensional cluster state using a duality mapping. New J. Phys. 13, 065010 13 pp (2011)

    Article  ADS  Google Scholar 

  12. Van den Nest, M., Miyake, Dür, A., Briegel, W., Hans, J.: Universal resources for measurement-based quantum computation. Phys. Rev. Lett. 97, 150504 4 pp (2006)

  13. Markham D., Miyake A., Virmani S.: Entanglement and local information access for graph states. New J. Phys. 9, 194 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. Chen, X., Gu, Z-C., Wen, X-G.: Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 82, 155138 28 pp (2010)

    Article  ADS  Google Scholar 

  15. Chen, X., Gu, Z-C., Wen, X-G.: Classification of gapped symmetric phases in one-dimensional spin systems, ibid. Phys. Rev. B 83, 035107 19 pp (2011)

    Article  ADS  Google Scholar 

  16. Chen, X., Gu, Z-C., Wen, X-G.: Towards a complete classification of 1D gapped quantum phases in interacting spin systems ibid arXiv:1103.3323 15 pp (2011)

  17. den Nijs M., Rommelse K.: Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains. Phys. Rev. B 40, 4709–4734 (1989)

    Article  ADS  Google Scholar 

  18. Pollmann, F., Berg, E., Turner, A.M., Oshikawa, M.: Symmetry protection of topological order in one-dimensional quantum spin systems, arXiv:0909.4059v2 (2011)

  19. Kou, S-P., Wen, X-G.: Translation-symmetry-protected topological orders in quantum spin systems. Phys. Rev. B 80, 224406 11 pp (2009)

  20. Miyake, A.: Quantum computation on the edge of a symmetry-protected topological order. Phys. Rev. Lett. 105, 040501 4 pp (2010)

  21. Son, W., Amico, L., Fazio, R., Hamma, A., Pascazio, S., Vedral, V.: Quantum phase transition between cluster and antiferromagnetic states. Europhys. Lett. 95, 5001 5 pp (2011)

    Google Scholar 

  22. Smacchia, P. et al.: Statistical mechanics of the cluster Ising model. Phys. Rev. A 84, 022304 12 pp (2011)

  23. Gottesman D.: Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862–1868 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  24. Haldane F.D.M.: O(3) nonlinear s model and the topological distinction between integer- and half-integer-spin antiferromagnets in two dimensions. Phys. Rev. Lett. 61, 1029–1032 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  25. Schollwöck, U. (eds) et al.: Quantum Magnetism. Springer, Berlin (2004)

    Google Scholar 

  26. Gu Z.-G., Wen X.G.: Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order. Phys. Rev. B 80, 155131 (2009)

    Article  ADS  Google Scholar 

  27. Doherty, A.C., Bartlett, S.D.: Identifying phases of quantum many-body systems that are universal for quantum computation. Phys. Rev. Lett. 103, 020506 4 pp (2009)

    Article  ADS  Google Scholar 

  28. Skrøvseth, S.O., Bartlett, S.D.: Phase transitions and localizable entanglement in cluster-state spin chains with Ising couplings and local fields. Phys. Rev. A 80, 022316 10 pp (2009)

    Article  ADS  Google Scholar 

  29. Bartlett, S.D., Rudolph, T.: Simple nearest-neighbor two-body Hamiltonian system for which the ground state is a universal resource for quantum computation. Phys. Rev. A 74, 040302(R) 4 pp (2006)

    MathSciNet  Google Scholar 

  30. Nussinov, Z., Ortiz, G.: Autocorrelations and thermal fragility of anyonic loops in topologically quantum ordered systems. Phys. Rev. B 77, 064302 16 pp (2008)

    Article  ADS  Google Scholar 

  31. Nussinov Z., Ortiz G.: A symmetry principle for topological quantum order. Ann. Phys. 324, 977–1057 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Cobanera E., Nussinov Z., Ortiz G.: The bond-algebraic approach to dualities. Adv. Phys. 60, 679–798 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Amico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Son, W., Amico, L. & Vedral, V. Topological order in 1D Cluster state protected by symmetry. Quantum Inf Process 11, 1961–1968 (2012). https://doi.org/10.1007/s11128-011-0346-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0346-7

Keywords

Navigation