Abstract
We demonstrate how to construct the Z 2 × Z 2 global symmetry which protects the ground state degeneracy of cluster states for open boundary conditions. Such a degeneracy ultimately arises because the set of stabilizers do not span a complete set of integrals of motion of the cluster state Hamiltonian for open boundary conditions. By applying control phase transformations, our construction makes the stabilizers into the Pauli operators spanning the qubit Hilbert space from which the degeneracy comes.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Briegel H.J., Raussendorf R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)
Raussendorf R., Browne D.E., Briegel H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68(1–32), 022312 (2003)
Nielsen M.A.: Cluster-state quantum computation. Rep. Math. Phys. 57, 147–161 (2006)
Nielsen M., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Farhi, E., Goldstone, J., Gutmann, S., Sipse, M.: Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106v1 (2000).
Das Sarma, S., Freedman, M., Nayak, C.: Topologically protected qubits from a possible non-abelian fractional quantum Hall state. Phys. Rev. Lett. 94, 166802 4 pp (2005)
Nayak C., Simon S.H., Stern A., Freedman M., Das Sarma S.: Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008)
Wen X.: Topological orders and edge excitations in fractional quantum Hall states. Adv. Phys. 44, 405–473 (1995)
Affleck I. et al.: Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59, 799–802 (1987)
Kitaev, A., Laumann, C.: Topological phases and quantum computation, arXiv:0904.2771 (2009)
Brown, B.J., Son, W., Kraus, C.V., Fazio, R., Vedral, V.: Generating topological order from a two-dimensional cluster state using a duality mapping. New J. Phys. 13, 065010 13 pp (2011)
Van den Nest, M., Miyake, Dür, A., Briegel, W., Hans, J.: Universal resources for measurement-based quantum computation. Phys. Rev. Lett. 97, 150504 4 pp (2006)
Markham D., Miyake A., Virmani S.: Entanglement and local information access for graph states. New J. Phys. 9, 194 (2007)
Chen, X., Gu, Z-C., Wen, X-G.: Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 82, 155138 28 pp (2010)
Chen, X., Gu, Z-C., Wen, X-G.: Classification of gapped symmetric phases in one-dimensional spin systems, ibid. Phys. Rev. B 83, 035107 19 pp (2011)
Chen, X., Gu, Z-C., Wen, X-G.: Towards a complete classification of 1D gapped quantum phases in interacting spin systems ibid arXiv:1103.3323 15 pp (2011)
den Nijs M., Rommelse K.: Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains. Phys. Rev. B 40, 4709–4734 (1989)
Pollmann, F., Berg, E., Turner, A.M., Oshikawa, M.: Symmetry protection of topological order in one-dimensional quantum spin systems, arXiv:0909.4059v2 (2011)
Kou, S-P., Wen, X-G.: Translation-symmetry-protected topological orders in quantum spin systems. Phys. Rev. B 80, 224406 11 pp (2009)
Miyake, A.: Quantum computation on the edge of a symmetry-protected topological order. Phys. Rev. Lett. 105, 040501 4 pp (2010)
Son, W., Amico, L., Fazio, R., Hamma, A., Pascazio, S., Vedral, V.: Quantum phase transition between cluster and antiferromagnetic states. Europhys. Lett. 95, 5001 5 pp (2011)
Smacchia, P. et al.: Statistical mechanics of the cluster Ising model. Phys. Rev. A 84, 022304 12 pp (2011)
Gottesman D.: Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862–1868 (1996)
Haldane F.D.M.: O(3) nonlinear s model and the topological distinction between integer- and half-integer-spin antiferromagnets in two dimensions. Phys. Rev. Lett. 61, 1029–1032 (1988)
Schollwöck, U. (eds) et al.: Quantum Magnetism. Springer, Berlin (2004)
Gu Z.-G., Wen X.G.: Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order. Phys. Rev. B 80, 155131 (2009)
Doherty, A.C., Bartlett, S.D.: Identifying phases of quantum many-body systems that are universal for quantum computation. Phys. Rev. Lett. 103, 020506 4 pp (2009)
Skrøvseth, S.O., Bartlett, S.D.: Phase transitions and localizable entanglement in cluster-state spin chains with Ising couplings and local fields. Phys. Rev. A 80, 022316 10 pp (2009)
Bartlett, S.D., Rudolph, T.: Simple nearest-neighbor two-body Hamiltonian system for which the ground state is a universal resource for quantum computation. Phys. Rev. A 74, 040302(R) 4 pp (2006)
Nussinov, Z., Ortiz, G.: Autocorrelations and thermal fragility of anyonic loops in topologically quantum ordered systems. Phys. Rev. B 77, 064302 16 pp (2008)
Nussinov Z., Ortiz G.: A symmetry principle for topological quantum order. Ann. Phys. 324, 977–1057 (2009)
Cobanera E., Nussinov Z., Ortiz G.: The bond-algebraic approach to dualities. Adv. Phys. 60, 679–798 (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Son, W., Amico, L. & Vedral, V. Topological order in 1D Cluster state protected by symmetry. Quantum Inf Process 11, 1961–1968 (2012). https://doi.org/10.1007/s11128-011-0346-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-011-0346-7