Abstract
Nuclear magnetic resonance (NMR) has been widely used in the context of quantum information processing (QIP). However, despite the great similarities between NMR and nuclear quadrupole resonance (NQR), no experimental implementation for QIP using NQR has been reported. We describe the implementation of basic quantum gates and their applications on the creation and manipulation of pseudopure states using linearly polarized radiofrequency pulses under static magnetic field perturbation. The NQR quantum operations were implemented using a single-crystal sample of \(\hbox {KClO}_{3}\) and observing \(^{35}\hbox {Cl}\) nuclei, which possess spin 3/2 and give rise to a two-qubit system. The results are very promising and indicate that NQR can be successfully used for performing fundamental experiments in QIP. One advantage of NQR in comparison with NMR is that the main interaction is internal to the sample, which makes the system more compact, lowering its cost and making it easier to be miniaturized to solid-state devices. Furthermore, as an example, the study of squeezed spin states could receive relevant contributions from NQR.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Araujo-Ferreira, A.G., Auccaise, R., Sarthour, R.S., Oliveira, I.S., Bonagamba, T.J., Roditi, I.: Classical bifurcation in a quadrupolar nmr system. Phys. Rev. A 87(5), 053,605 (2013). doi:10.1103/PhysRevA.87.053605
Auccaise, R., Araujo-Ferreira, A.G., Sarthour, R.S., Oliveira, I.S., Bonagamba, T.J., Roditi, I.: Spin squeezing in a quadrupolar nuclei NMR system. Phys. Rev. Lett. 114(4), 043,604 (2015)
Auccaise, R., Maziero, J., Celeri, L.C., Soares-Pinto, D.O., deAzevedo, E.R., Bonagamba, T.J., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Experimentally witnessing the quantumness of correlations. Phys. Rev. Lett. 107(7), 070,501 (2011). doi:10.1103/PhysRevLett.107.070501
Auccaise, R., Teles, J., Sarthour, R.S., Bonagamba, T.J., Oliveira, I.S., de Azevedo, E.R.: A study of the relaxation dynamics in a quadrupolar nmr system using quantum state tomography. J. Magn. Reson. 192(1), 17–26 (2008). doi:10.1016/j.jmr.2008.01.009
Bain, A., Khasawneh, M.: From NQR to NMR: the complete range of quadrupole interactions. Concepts Magn. Reson. Part A 22A(2), 69–78 (2004). doi:10.1002/cmr.a.20013
Baugh, J., Moussa, O., Ryan, C.A., Laflamme, R., Ramanathan, C., Havel, T.F., Cory, D.G.: Solid-state nmr three-qubit homonuclear system for quantum-information processing: control and characterization. Phys. Rev. A 73(2), 022,305 (2006). doi:10.1103/PhysRevA.73.022305
Bonk, F.A., Sarthour, R.S., deAzevedo, E.R., Bulnes, J.D., Mantovani, G.L., Freitas, J.C.C., Bonagamba, T.J., Guimaraes, A.P., Oliveira, I.S.: Quantum-state tomography for quadrupole nuclei and its application on a two-qubit system. Phys. Rev. A 69(4), 042322–042322 (2004)
Cappellaro, P., Goldstein, G., Hodges, J.S., Jiang, L., Maze, J.R., Sorensen, A.S., Lukin, M.D.: Environment-assisted metrology with spin qubits. Phys. Rev. A 85(3), (2012). doi:10.1103/PhysRevA.85.032336
Childress, L., Dutt, M.V.G., Taylor, J.M., Zibrov, A.S., Jelezko, F., Wrachtrup, J., Hemmer, P.R., Lukin, M.D.: Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314(5797), 281–285 (2006). doi:10.1126/science.1131871
Chuang, I.L., Gershenfeld, N., Kubinec, M.G., Leung, D.W.: Bulk quantum computation with nuclear magnetic resonance: theory and experiment. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 454, 447–467 (1969)
Cory, D.G., Fahmy, A.F., Havel, T.F.: Ensemble quantum computing by nmr spectroscopy. Proc. Natl. Acad. Sci. USA 94(5), 1634–1639 (1997)
Estrada, R.A., de Azevedo, E.R., Duzzioni, E.I., Bonagamba, T.J., Youssef Moussa, M.H.: Spin coherent states in nmr quadrupolar system: experimental and theoretical applications. Eur. Phys. J. D 67(6), 127 (2013). doi:10.1140/epjd/e2013-30689-1
Fisher, A.: Quantum computing in the solid state: the challenge of decoherence. Philos Tr. R. Soc. S-A 361(1808), 1441–1450 (2003). doi:10.1098/rsta.2003.1213
Fortunato, E.M., Pravia, M.A., Boulant, N., Teklemariam, G., Havel, T.F., Cory, D.G.: Design of strongly modulating pulses to implement precise effective hamiltonians for quantum information processing. J. Chem. Phys. 116(17), 7599–7606 (2002)
Furman, G., Goren, S.: Pure nqr quantum computing. Zeitschrift Fur Naturforschung Sect. A-A J. Phys. Sci. 57(6–7), 315–319 (2002)
Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275(5298), 350–356 (1997)
Hanson, R., Awschalom, D.D.: Coherent manipulation of single spins in semiconductors. Nature 453(7198), 1043–1049 (2008). doi:10.1038/nature07129
Itoh, K.: An all-silicon linear chain nmr quantum computer. Solid State Commun. 133(11), 747–752 (2005)
Kampermann, H., Veeman, W.: Characterization of quantum algorithms by quantum process tomography using quadrupolar spins in solid-state nuclear magnetic resonance. J. Chem. Phys. 122(21), 214,108 (2005). doi:10.1063/1.1904595
Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbruggen, T., Glaser, S.: Optimal control of coupled spin dynamics: design of nmr pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172(2), 296–305 (2005). doi:10.1016/j.jmr.2004.11.004
Khitrin, A.K., Fung, B.M.: Nmr simulation of an eight-state quantum system. Phys. Rev. A 64, 032,306 (2001). doi:10.1103/PhysRevA.64.032306
Kitagawa, M., Ueda, M.: Squeezed spin states. Phys. Rev. A 47(6), 5138–5143 (1993). doi:10.1103/PhysRevA.47.5138
Knill, E., Chuang, I., Laflamme, R.: Effective pure states for bulk quantum computation. Phys. Rev. A 57, 3348–3363 (1998). doi:10.1103/PhysRevA.57.3348
Law, C., Ng, H., Leung, P.: Coherent control of spin squeezing. Phys. Rev. A 63(5), 055,601 (2001). doi:10.1103/PhysRevA.63.055601
Leskowitz, G., Ghaderi, N., Olsen, R., Mueller, L.: Three-qubit nuclear magnetic resonance quantum information processing with a single-crystal solid. J. Chem. Phys. 119(3), 1643–1649 (2003). doi:10.1063/1.1582171
Maziero, J., Auccaise, R., Celeri, L.C., Soares-Pinto, D.O., deAzevedo, E.R., Bonagamba, T.J., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Quantum discord in nuclear magnetic resonance systems at room temperature. Braz. J. Phys. 43(1–2), 86–104 (2013). doi:10.1007/s13538-013-0118-1
Possa, D., Gaudio, A.C., Freitas, J.C.C.: Numerical simulation of nqr/nmr: applications in quantum computing. J. Magn. Reson. 209(2), 250–260 (2011). doi:10.1016/j.jmr.2011.01.020
Ramanathan, C., Boulant, N., Chen, Z., Cory, D.G., Chuang, I., Steffen, M.: Nmr quantum information processing. Quantum Inf. Process. 3(1–5), 15–44 (2004). doi:10.1007/s11128-004-3668-x
Rochester, S.M., Ledbetter, M.P., Zigdon, T., Wilson-Gordon, A.D., Budker, D.: Orientation-to-alignment conversion and spin squeezing. Phys. Rev. A 85(2), (2012). doi:10.1103/PhysRevA.85.022125
Sinha, N., Mahesh, T., Ramanathan, K., Kumar, A.: Toward quantum information processing by nuclear magnetic resonance: pseudopure states and logical operations using selective pulses on an oriented spin 3/2 nucleus. J. Chem. Phys. 114(10), 4415–4420 (2001). doi:10.1063/1.1346645
Soares-Pinto, D.O., Moussa, M.H.Y., Maziero, J., deAzevedo, E.R., Bonagamba, T.J., Serra, R.M., Celeri, L.C.: Equivalence between redfield- and master-equation approaches for a time-dependent quantum system and coherence control. Phys. Rev. A 83(6), 062,336 (2011). doi:10.1103/PhysRevA.83.062336
Suter, D., Mahesh, T.S.: Spins as qubits: quantum information processing by nuclear magnetic resonance. J. Chem. Phys. 128(5), 052,206 (2008). doi:10.1063/1.2838166
Teles, J., deAzevedo, E.R., Auccaise, R., Sarthour, R.S., Oliveira, I.S., Bonagamba, T.J.: Quantum state tomography for quadrupolar nuclei using global rotations of the spin system. J. Chem. Phys. 126, 154506
Utton, D.: Temperature dependence of nuclear quadrupole resonance frequency of 35cl in kclo3 between 12 degrees and 90 degrees k. J. Chem. Phys. 47(2), 371 (1967). doi:10.1063/1.1711901
Vandersypen, L., Chuang, I.: Nmr techniques for quantum control and computation. Rev. Mod. Phys. 76(4), 1037–1069 (2004)
Wineland, D., Bollinger, J., Itano, W., Moore, F., Heinzen, D.: SPIN squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46(11), R6797–R6800 (1992)
Yusa, G., Muraki, K., Takashina, K., Hashimoto, K., Hirayama, Y.: Controlled multiple quantum coherences of nuclear spins in a nanometre-scale device. Nature 434(7036), 1001–1005 (2005). doi:10.1038/nature03456
Zeldes, H., Livingston, R.: Zeeman effect on the quadrupole spectra of sodium, potassium, and barium chlorates. J. Chem. Phys. 26(5), 1102–1106 (1957). doi:10.1063/1.1743479
Acknowledgments
This work was supported by Brazilian agencies FAPESP (2012/02208-5) and CNPq (483109/2011-8), and by the Brazilian National Institute of Science and Technology for Quantum Information (INCT-IQ). The authors also acknowledge Aparecido Donizeti Fernandes de Amorim and Elderson Cássio Domenicucci by the technical support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Teles, J., Rivera-Ascona, C., Polli, R.S. et al. Experimental implementation of quantum information processing by Zeeman-perturbed nuclear quadrupole resonance. Quantum Inf Process 14, 1889–1906 (2015). https://doi.org/10.1007/s11128-015-0967-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-015-0967-3