Skip to main content

Advertisement

Log in

Improvement of a quantum broadcasting multiple blind signature scheme based on quantum teleportation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, a broadcasting multiple blind signature scheme based on quantum teleportation has been proposed for the first time. It is claimed to have unconditional security and properties of quantum multiple signature and quantum blind signature. In this paper, we analyze the security of the protocol and show that each signatory can learn the signed message by a single-particle measurement and the signed message can be modified at random by any attacker according to the scheme. Furthermore, there are some participant attacks and external attacks existing in the scheme. Finally, we present an improved scheme and show that it can resist all of the mentioned attacks. Additionally, the secret keys can be used again and again, making it more efficient and practical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  3. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79(5), 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82(4), 042325 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  5. Li, Q., Li, C., Long, D.Y., et al.: Efficient arbitrated quantum signature and its proof of security. Quantum Inf. Process. 12(7), 2427–2439 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Luo, Y.P., Hwang, T.: Arbitrated quantum signature of classical messages without using authenticated classical channels. Quantum Inf. Process. 13(1), 113–120 (2014)

    Article  ADS  Google Scholar 

  7. Yu, C.H., Guo, D., Lin, S.: Arbitrated quantum signature scheme based on reusable key. Sci. China Phys. Mech. Astron. 57(11), 2079–2085 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  8. Yin, X.R., Ma, W.P., Liu, W.Y.: Quantum proxy group signature scheme with-type entangled states. Int. J. Quantum Inf. 10, 1250041 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Process. 11(2), 455–463 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  10. Wen, X., Chen, Y., Fang, J.: An inter-bank E-payment protocol based on quantum proxy blind signature. Quantum Inf. Process. 12(1), 549–558 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Cao, H.J., Huang, J., Yu, Y.F., et al.: A quantum proxy signature scheme based on genuine five-qubit entangled state. Int. J. Theor. Phys. 53(9), 3095–3100 (2014)

    Article  MATH  Google Scholar 

  12. Wen, X., Tian, Y., Ji, L., et al.: A group signature scheme based on quantum teleportation. Phys. Scr. 81(5), 055001 (2010)

    Article  ADS  MATH  Google Scholar 

  13. Wen, X.: An E-payment system based on quantum group signature. Phys. Scr. 82(6), 065403 (2010)

    Article  MATH  Google Scholar 

  14. Xu, R., Huang, L., Yang, W., et al.: Quantum group blind signature scheme without entanglement. Opt. Commun. 284(14), 3654–3658 (2011)

    Article  ADS  Google Scholar 

  15. Zhang, K., Song, T., Zuo, H., et al.: A secure quantum group signature scheme based on Bell states. Phys. Scr. 87(4), 045012 (2013)

    Article  ADS  Google Scholar 

  16. Qi, S., Zheng, H., Wen, Q., et al.: Quantum blind signature based on two-state vector formalism. Opt. Commun. 283(21), 4408–4410 (2010)

    Article  ADS  Google Scholar 

  17. Yin, X.R., Ma, W.P., Liu, W.Y.: A blind quantum signature scheme with-type entangled states. Int. J. Theor. Phys. 51(2), 455–461 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin, T.S., Chen, Y., Chang, T.H., et al.: Quantum blind signature based on quantum circuit. Nanotechnology (IEEE-NANO). In: 2014 IEEE 14th International Conference on. IEEE, pp. 868–872 (2014)

  19. Wen, X.J., Liu, Y., Sun, Y.: Quantum multi-signature protocol based on teleportation. Z. Nat. A 62(3/4), 147 (2007)

    MATH  Google Scholar 

  20. Wen, X., Liu, Y.: A realizable quantum sequential multi-signature scheme. Dianzi Xuebao (Acta Electron. Sin.) 35(6), 1079–1083 (2007)

    MathSciNet  Google Scholar 

  21. Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A. 84(2), 022344 (2011)

    Article  ADS  Google Scholar 

  22. Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84(6), 062330 (2011)

    Article  ADS  Google Scholar 

  23. Zuo, H., Zhang, K., Song, T.: Security analysis of quantum multi-signature protocol based on teleportation. Quantum Inf. Process. 12(7), 2343–2353 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Kejia, Z., Dan, L., Qi, S.: Security of the arbitrated quantum signature protocols revisited. Phys. Scr. 89(1), 015102 (2014)

    Article  ADS  Google Scholar 

  25. Yang, C.W., Luo, Y.P., Hwang, T.: Forgery attack on one-time proxy signature and the improvement. Quantum Inf. Process. 13(9), 2007–2016 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Liu, Z.H., Chen, H.W., Wang, D., et al.: Cryptanalysis and improvement of three-particle deterministic secure and high bit-rate direct quantum communication protocol. Quantum Inf. Process. 13(6), 1345–1351 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Wang, T.Y., Cai, X.Q., Zhang, R.L.: Security of a sessional blind signature based on quantum cryptograph. Quantum Inf. Process. 13(8), 1677–1685 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Lo, H., Ko, T.: Some attacks on quantum-based cryptographic protocols. Quantum Inf. Comput. 5(1), 41–48 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Gao, F., Guo, F., Wen, Q., Zhu, F.: Comment on experimental demonstration of a quantum protocol for byzantine agreement and liar detection. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  30. Zhang, Y., Li, C., Guo, G.: Comment on “Quantum key distribution without alternative measurements” [Phys. Rev. A 61, 052312 (2000)]. Phys. Rev. A 63, 036301 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  31. Gao, F., Qin, S., Wen, Q., Zhu, F.: A simple participant attack on the Bradler–Dusek protocol. Quantum Inf. Comput. 7(4), 329–334 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Wang, T., Wen, Q., Chen, X.: Cryptanalysis and improvement of a multi-user quantum key distribution protocol. Opt. Commun. 283(24), 5261–5263 (2010)

    Article  ADS  Google Scholar 

  33. Gao, F., Wen, Q., Zhu, F.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17(9), 3189 (2008)

    Article  ADS  Google Scholar 

  34. Wang, T., Wen, Q., Gao, F., et al.: Cryptanalysis and improvement of multiparty quantum secret sharing schemes. Phys. Lett. A 373(1), 65–68 (2008)

  35. Gao, F., Qin, S., Guo, F., Wen, Q.: Dense-coding attack on three-party quantum key distribution protocols. IEEE J. Quantum Electron. 47(5), 630–635 (2011)

    Article  ADS  Google Scholar 

  36. Hao, L., Li, J., Long, G.: Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci. Chin. Phys. Mech. Astron. 53(3), 491–495 (2010)

    Article  ADS  Google Scholar 

  37. Qin, S., Gao, F., Wen, Q., Zhu, F.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357(2), 101–103 (2006)

    Article  ADS  MATH  Google Scholar 

  38. Wjcik, A.: Eavesdropping on the Ping-Pong quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)

    Article  ADS  Google Scholar 

  39. Wjcik, A.: Comment on quantum dense key distribution. Phys. Rev. A 71, 016301 (2005)

    Article  ADS  Google Scholar 

  40. Cai, Q.: The Ping-Pong protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91, 109801 (2003)

    Article  ADS  Google Scholar 

  41. Gao, F., Guo, F., Wen, Q., Hu, F.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 77, 014302 (2008)

    Article  ADS  Google Scholar 

  42. Gao, F., Wen, Q., Zhu, F.: Comment on: quantum exam [Phys. Lett. A 350 (2006) 174]. Phys. Lett. A 360(6), 748–750 (2007)

    Article  ADS  Google Scholar 

  43. Gao, F., Lin, S., Wen, Q., Zhu, F.: A special eavesdropping on one-sender versus N-receiver QSDC protocol. Chin. Phys. Lett. 25(5), 1561 (2008)

    Article  ADS  Google Scholar 

  44. Gao, F., Qin, S., Wen, Q., Zhu, F.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283(1), 192–195 (2010)

    Article  ADS  Google Scholar 

  45. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  46. Deng, F., Li, X., Zhou, H., Zhang, Z.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  47. Jain, N., Anisimova, E., Khan, I., et al.: Trojan-horse attacks threaten the security of practical quantum cryptography. New J. Phys. 16(12), 123030 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  48. Yang, Y.G., Sun, S.J., Zhao, Q.Q.: Trojan-horse attacks on quantum key distribution with classical Bob. Quantum Inf. Process. 14(2), 681–686 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Wang, T., Wen, Q.: Security of a kind of quantum secret sharing with single photons. Quantum Inf. Comput. 11(5), 434–443 (2011)

    MathSciNet  MATH  Google Scholar 

  50. Wang, T., Wen, Q., Zhu, F.: Cryptanalysis of multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 284(6), 1711–1713 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  51. Tian, Y., Chen, H., Ji, S., et al.: A broadcasting multiple blind signature scheme based on quantum teleportation. Opt. Quantum Electron. 46(6), 769–777 (2014)

    Article  Google Scholar 

  52. Kim, T., Choi, J.W., Jho, N.S., et al.: Quantum messages with signatures forgeable in arbitrated quantum signature schemes. Phys. Scr. 90(2), 025101 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank the referees for their very helpful suggestions that greatly helped to improve the quality of this paper. This work was partly supported by the National Natural Science Foundation of China (Nos. 61272058, 61572532), the Natural Science Foundation of Qiannan Normal College for Nationalities joint Guizhou Province of China (NO. Qian-Ke-He LH Zi[2015]7719) and the Foundation of Graduate Education Reform of Wuyi University (No. YJS-JGXM-14-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daowen Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Qiu, D. & Zou, X. Improvement of a quantum broadcasting multiple blind signature scheme based on quantum teleportation. Quantum Inf Process 15, 2499–2519 (2016). https://doi.org/10.1007/s11128-016-1289-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1289-9

Keywords

Navigation