Abstract
In this paper, let q be an odd prime power. Based on new constacyclic codes which contain their Hermitian duals and Hermitian construction, we construct some classes of quantum MDS codes and quantum codes. When \(q\equiv 1\ \textrm{mod}\ 4\), x and y are a divisor of \(q-1\) and \(q+1\), respectively, we can construct a class of new quantum codes of length \(n=2xy\frac{q^{2m}-1}{q^2-1}\) for odd \(x,y,m\ge 3\). These codes have larger dimensions than existing codes. In addition, for q with the form \(2am\pm \sqrt{(x^2+y^2)a-1}\) and odd x, y, a with \(gcd(x,y)=1\), we get some quantum MDS codes of length \(n=\frac{q^2+1}{a}\).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Not applicable.
References
Li, S., Xiong, M., Ge, G.: Pseudo-cyclic codes and the construction of quantum MDS codes. IEEE Trans. Inf. Theory 62(4), 1703–1710 (2016)
Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)
Bierbrauer, J., Edel, Y.: Quantum twisted codes. J. Combin. Des. 8(3), 174–188 (2000)
Chen, H., Ling, S., Xing, C.: Quantum codes from concatenated algebraic-geometric codes. IEEE Trans. Inf. Theory 51(8), 2915–2920 (2005)
Cohen, G., Encheva, S., Litsyn, S.: On binary constructions of quantum codes. IEEE Trans. Inf. Theory 45(7), 2495–2498 (1999)
Feng, K.: Quantum codes \([[6,2,3]]_p\) and \([[7,3,3]]_p (p\ge 3)\) exist. IEEE Trans. Inf. Theory 48(8), 2384–2391 (2002)
Grassl, M., Beth, T., Rötteler, M.: On optimal quantum codes. Int. J. Quantum Inf. 2(1), 55–64 (2004)
Grassl, M., Rötteler, M., Beth, T.: On quantum MDS codes. In: Proceedings of the International Symposium on Information Theory, Chicago, IL, USA, p. 356 (2004)
Hu, D., Tang, W., Zhao, M., Chen, Q., Yu, S., Oh, C.H.: Graphical nonbinary quantum error-correcting codes. Phys. Rev. A 78(1), 012306-1–012306-11 (2008)
Jin, L., Ling, S., Luo, J., Xing, C.: Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes. IEEE Trans. Inf. Theory 56(9), 4735–4740 (2010)
Jin, L., Xing, C.: A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 60(5), 2921–2925 (2014)
Guardia, G.G.L.: New quantum MDS codes. IEEE Trans. Inf. Theory 57(8), 5551–5554 (2011)
Li, Z., Xing, L., Wang, X.: Quantum generalized Reed-Solomon codes: Unified framework for quantum maximum-distance-separable codes. Phys. Rev. A 77(1), 012308-1–012308-4 (2008)
Li, R., Xu, Z.: Construction of \([[n,n-4,3]]_q\) quantum codes for odd prime power \(q\). Phys. Rev. A 82(5), 052316-1–052316-4 (2010)
Steane, A.M.: Quantum Reed-Muller codes. IEEE Trans. Inf. Theory 45(5), 1701–1703 (1999)
Steane, A.M.: Enlargement of Calderbank–Shor–Steane quantum codes. IEEE Trans. Inf. Theory 45(6), 2492–2495 (1999)
Sarvepalli, P.K., Klappenecker, A.: Nonbinary quantum Reed–Muller codes. In: Proceedings of the International Symposium on Information Theory, Adelaide, Australia, pp. 1023–1027 (2005)
Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2), 1193–1197 (2013)
Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015)
Zhang, G., Chen, B.: New quantum MDS codes. Int. J. Quantum Inf. 12(4), 1450019 (2014)
Wang, L., Zhu, S.: New quantum MDS codes derived from constacyclic codes. Quantum Inf. Process. 14(13), 881–889 (2015)
He, X., Xu, L., Chen, H.: New \(q\)-ary quantum MDS codes with distances bigger than \(q/2\). Quantum Inf. Process. 15(7), 1–14 (2016)
Fang, W., Fu, F.: Two new classes of quantum MDS codes. Finite Fields Their Appl. 53(3), 85–98 (2018)
Shi, X., Yue, Q., Zhu, X.: Construction of some new quantum MDS codes. Finite Fields Their Appl. 46, 347–362 (2017)
Jin, L., Kan, H., Wen, J.: Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes. Des. Codes Cryptogr. 84, 463–471 (2017)
Shi, X., Yue, Q., Chang, Y.: Some quantum MDS codes with large minimum distance from generalized Reed-Solomon codes. Cryptogr. Commun. 10(6), 1165–1182 (2017)
Shi, X., Yue, Q., Wu, Y.: New quantum MDS codes with large minimum distance and short length from generalized Reed–Solomon codes. Discrete Math. 342(7), 1989–2001 (2019)
Fang, W., Fu, F.: Some new constructions of quantum MDS codes. IEEE Trans. Inf. Theory 65(12), 7840–7847 (2019)
Taneja, Divya, Gupta, Manish, Narula, Rajesh, Bhullar, Jaskaran: Construction of new quantum MDS codes derived from constacyclic codes. Int. J. Quantum Inf. 15(1), 1750008 (2017)
Huang, N., Tang, X.: A class of new quantum MDS codes from constacyclic codes. Pure Math. 8(6), 644–649 (2018)
Guo, G., Li, R., Guo, L.: On the construction of quantum MDS codes. Int. J. Theor. Phys. 57, 3525–3539 (2018)
Tian, F., Zhu, S.: Some new quantum MDS codes from generalized Reed–Solomon codes. Discrete Math. 342(12), 111593 (2019)
Fang, X., Luo, J.: New quantum MDS codes over finite fields. Quantum Inf. Process. 19(1), 16 (2019)
Zhang, T., Ge, G.: Quantum MDS codes with large minimum distance. Des. Codes Cryptogr. 83, 503–517 (2017)
Guo, G., Li, R., Liu, Y.: Application of Hermitian self-orthogonal GRS codes to some quantum MDS codes. Finite Fields Their Appl. 76, 101901 (2021)
Jin, R., Luo, J., Fang, X., Qu, L.: New constructions of quantum MDS codes over finite fields. Quantum Inf. Process. 21, 395 (2022)
Song, H., Li, R., Wang, J., Liu, Y.: Two families of BCH codes and new quantum codes. Quantum Inf. Process. 17(10), 1–24 (2018)
Wang, L., Sun, Z., Zhu, S.: Hermitian dual-containing narrow-sense constacyclic BCH codes and quantum codes. Quantum Inf. Comput. 18(10), 1–40 (2019)
Zhang, M., Li, Z., Xing, L., Tang, N.: Construction of some new quantum BCH codes. IEEE Access 6, 36122–36131 (2018)
Goyeneche, D., Z̈yczkowski, K.: Genuinely multipartite entangled states and orthogonal arrays. Phys. Rev. A 90, 022316 (2014)
Pang, S., Zhang, X., Lin, X., Zhang, Q.: Two and three-uniform states from irredundant orthogonal arrays. NPJ Quantum Inf. 5(52), 1–10 (2019)
Pang, S., Zhang, X., Du, J., Wang, T.: Multipartite entanglement states of higher uniformity. J. Phys. A Math. Theor. 54, 1–10 (2021)
Pang, S., Zhang, X., Fei, S., Zheng, Z.: Quantum \(k\)-uniform states for heterogeneous systems from irredundant mixed orthogonal arrays. Quantum Inf. Process. 20, 1–46 (2021)
Pang, S., Xu, H., Chen, M.: Construction of binary quantum error-correcting codes from orthogonal array. Entropy 24(7), 1000 (2022)
Yan, R., Pang, S., Chen, M., Yang, F.: Quantum error-correcting codes based on orthogonal arrays. Entropy 25(4), 680 (2023)
Zhang, T., Ge, G.: Some new classes of quantum MDS codes from constacyclic codes. IEEE Trans. Inf. Theory 61(9), 5224–5228 (2015)
Pang, S., Yang, F., Yan, R., Du, J., Wang, T.: Construction of quaternary quantum error-correcting codes via orthogonal arrays. Front. Phys. 11 (2023)
Kai, X., Zhu, S.: Quantum negacyclic codes. Phys. Rev. A 88(1), 012326-4–012326-5 (2013)
Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)
Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)
Wang, J., Li, R., Liu, Y., Guo, G.: Some negacyclic BCH codes and quantum codes. Quantum Inf. Process. 19(2) (2020)
Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)
Zhang, J., Li, P., Kai, X., Zhu, S.: Some new classes of quantum BCH codes. Quantum Inf. Process. 21(12), 1–22 (2022)
Acknowledgements
This research was funded by the National Natural Science Foundation of China (Grant Number 11971004).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
All the authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Pang, S., Zhang, M., Chen, M. et al. Some new quantum codes from constacyclic codes. Quantum Inf Process 23, 11 (2024). https://doi.org/10.1007/s11128-023-04219-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-023-04219-3