Abstract
In this paper, we mainly investigate the detection of quantum states containing fewer than k unentangled particles in multipartite quantum systems. Based on inequalities of nonlinear operators, we derive two families of criteria for detecting N-partite quantum states containing fewer than k unentangled particles. By concrete examples, we point out that both families of criteria can identify some quantum states containing fewer than k unentangled particles that cannot be tested by known criteria. This demonstrates the effectiveness of our criteria.

Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The authors confirm that the data supporting the findings of this study are available within the article.
References
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935). https://doi.org/10.1103/PhysRev.47.777
Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989). https://doi.org/10.1103/PhysRevA.40.4277
Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001). https://doi.org/10.1103/PhysRevLett.86.5188
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002). https://doi.org/10.1103/revmodphys.74.145
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7 (2014). https://doi.org/10.1016/j.tcs.2014.05.025
Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999). https://doi.org/10.1103/PhysRevA.59.1829
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992). https://doi.org/10.1103/PhysRevLett.69.2881
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993). https://doi.org/10.1103/PhysRevLett.70.1895
Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996). https://doi.org/10.1103/PhysRevLett.77.1413
Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997). https://doi.org/10.1016/S0375-9601(97)00416-7
Chen, K., Wu, L.A.: The generalized partial transposition criterion for separability of multipartite quantum states. Phys. Lett. A 306, 14 (2002). https://doi.org/10.1016/S0375-9601(02)01538-4
Chen, K., Wu, L.A.: A matrix realignment method for recognizing entanglement. Quantum Inf. Comput. 3, 193 (2003). https://doi.org/10.5555/2011534.2011535
Rudolph, O.: Some properties of the computable cross-norm criterion for separability. Phys. Rev. A 67, 032312 (2003). https://doi.org/10.1103/PhysRevA.67.032312
Hofmann, H.F., Takeuchi, S.: Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A 68, 032103 (2003). https://doi.org/10.1103/PhysRevA.68.032103
Zhang, C.J., Nha, H., Zhang, Y.S., Guo, G.C.: Entanglement detection via tighter local uncertainty relations. Phys. Rev. A 81, 012324 (2010). https://doi.org/10.1103/PhysRevA.81.012324
Gühne, O.: Characterizing entanglement via uncertainty relations. Phys. Rev. Lett. 92, 117903 (2004). https://doi.org/10.1103/PhysRevLett.92.117903
Gühne, O., Hyllus, P., Gittsovich, O., Eisert, J.: Covariance matrices and the separability problem. Phys. Rev. Lett. 99, 130504 (2007). https://doi.org/10.1103/PhysRevLett.99.130504
Li, N., Luo, S.L.: Entanglement detection via quantum Fisher information. Phys. Rev. A 88, 014301 (2013). https://doi.org/10.1103/PhysRevA.88.014301
Chen, K., Albeverio, S., Fei, S.M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95, 040504 (2005). https://doi.org/10.1103/PhysRevLett.95.040504
Simon, R.: Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000). https://doi.org/10.1103/PhysRevLett.84.2726
Nha, H., Zubairy, M.S.: Uncertainty inequalities as entanglement criteria for negative partial-transpose states. Phys. Rev. Lett. 101, 130402 (2008). https://doi.org/10.1103/PhysRevLett.101.130402
Schwonnek, R., Dammeier, L., Werner, R.F.: State-independent uncertainty relations and entanglement detection in noisy systems. Phys. Rev. Lett. 119, 170404 (2017). https://doi.org/10.1103/PhysRevLett.119.170404
Rastegin, A.E.: On uncertainty relations and entanglement detection with mutually unbiased measurements. Open Syst. Inf. Dyn. 22, 1550005 (2015). https://doi.org/10.1142/s1230161215500055
Sarbicki, G., Scala, G., Chruściński, D.: Family of multipartite separability criteria based on a correlation tensor. Phys. Rev. A 101, 012341 (2020). https://doi.org/10.1103/PhysRevLett.101.012341
Wang, K.K., Wei, Z.W., Fei, S.M.: Operation entanglement detection based on \(\Lambda \)-moments. Eur. Phys. J. Plus 137, 1378 (2022). https://doi.org/10.1140/epjp/s13360-022-03617-3
Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 479, 1 (2009). https://doi.org/10.1016/j.physrep.2009.02.004
Gao, T., Hong, Y.: Separability criteria for several classes of n-partite quantum states. Eur. Phys. J. D 61, 765 (2011). https://doi.org/10.1140/epjd/e2010-10432-4
Gao, T., Hong, Y.: Detection of genuinely entangled and nonseparable \(n\)-partite quantum states. Phys. Rev. A 82, 062113 (2010). https://doi.org/10.1103/PhysRevA.82.062113
Hong, Y., Gao, T., Yan, F.L.: Measure of multipartite entanglement with computable lower bounds. Phys. Rev. A 86, 062323 (2012). https://doi.org/10.1103/PhysRevA.86.062323
Gao, T., Hong, Y., Lu, Y., Yan, F.L.: Efficient \(k\)-separability criteria for mixed multipartite quantum states. Europhys. Lett. 104, 20007 (2013). https://doi.org/10.1209/0295-5075/104/20007
Gabriel, A., Hiesmayr, B.C., Huber, M.: Criterion for K-separability in mixed multipartite states. Quant. Inf. Comp. 10, 829 (2010). https://doi.org/10.1134/S0032946010030051
Gao, T., Yan, F.L., van Enk, S.J.: Permutationally invariant part of a density matrix and nonseparability of \(N\)-qubit states. Phys. Rev. Lett. 112, 180501 (2014). https://doi.org/10.1103/PhysRevLett.112.180501
Ma, Z.H., Chen, Z.H., Chen, J.L., Spengler, C., Gabriel, A., Huber, M., Briegel, H.J.: Measure of genuine multipartite entanglement with computable lower bounds. Phys. Rev. A 83, 062325 (2010). https://doi.org/10.1103/PhysRevA.83.062325
Huber, M., Mintert, F., Gabriel, A., Hiesmayr, B.C.: Detection of high-dimensional genuine multipartite entanglement of mixed states. Phys. Rev. Lett. 104, 210501 (2010). https://doi.org/10.1103/PhysRevLett.104.210501
Hong, Y., Luo, S.L., Song, H.T.: Detecting \(k\)-nonseparability via quantum Fisher information. Phys. Rev. A 91, 042313 (2015). https://doi.org/10.1103/PhysRevA.91.042313
Hong, Y., Luo, S.L.: Detecting k-nonseparability via local uncertainty relations. Phys. Rev. A 93, 042310 (2016). https://doi.org/10.1103/PhysRevA.93.042310
Xu, W., Zheng, Z.J., Zhu, C.J., Fei, S.M.: Measure and detection of genuine multipartite entanglement for \(n\)-partite systems. Eur. Phys. J. Plus 136, 5 (2021). https://doi.org/10.1140/epjp/s13360-020-01036-w
Wang, Y.Z., Hou, J.C.: Some nesessary and sufficient conditions for \(k\)-separability of multipartite pure states. Quant. Inf. Proc. 14, 3711 (2015). https://doi.org/10.1007/s11128-015-1074-1
Chen, Z.Q.: Wigner-Yanase skew information as tests for quantum entanglement. Phys. Rev. A 71, 052302 (2005). https://doi.org/10.1103/PhysRevA.71.052302
Hyllus, P., Laskowski, W., Krischek, R., Schwemmer, C., Wieczorek, W., Weinfurter, H., Pezzé, L., Smerzi, A.: Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012). https://doi.org/10.1103/PhysRevA.85.022321
Tóth, G.: Multipartite entanglement and high-precision metrology. Phys. Rev. A 85, 022322 (2012). https://doi.org/10.1088/1674-1056/abfb5e
Gessner, M., Pezzè, L., Smerzi, A.: Efficient entanglement criteria for discrete, continuous, and hybrid variables. Phys. Rev. A 94, 020101 (2016). https://doi.org/10.1103/PhysRevA.94.020101
Akbari-Kourbolagh, Y., Azhdargalam, M.: Entanglement criterion for multipartite systems based on quantum Fisher information. Phys. Rev. A 99, 012304 (2019). https://doi.org/10.1103/PhysRevA.99.012304
Vitagliano, G., Hyllus, P., Egusquiza, I.L., Tóth, G.: Spin squeezing inequalities for arbitrary spin. Phys. Rev. Lett. 107, 240502 (2011). https://doi.org/10.1103/PhysRevLett.107.240502
Hofmann, H.F., Takeuchi, S.: Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A 68, 032103 (2003). https://doi.org/10.1103/PhysRevA.68.032103
Tóth, G., Knapp, C., Gühne, O., Briegel, H.J.: Spin squeezing and entanglement. Phys. Rev. A 79, 042334 (2009). https://doi.org/10.1103/PhysRevA.79.042334
Hong, Y., Qi, X.F., Gao, T., Yan, F.L.: Detection of the quantum states containing at most \(k\)-1 unentangled particles. Chin. Phys. B 30, 100306 (2021). https://doi.org/10.1088/1674-1056/abfb5e
Gühne, O., Tóth, G., Briegel, H.J.: Multipartite entanglement in spin chains. New J. Phys. 7, 229 (2005). https://doi.org/10.1088/1367-2630/7/1/229
Tóth, G., Apellaniz, I.: Quantum metrology from a quantum information science perspective. J. Phys. A: Math. Theor. 47, 424006 (2014). https://doi.org/10.1088/1751-8113/47/42/424006
Apellaniz, I., Kleinmann, M., Gühne, O., Tóth, G.: Optimal witnessing of the quantum Fisher information with few measurements. Phys. Rev. A 95, 032330 (2017). https://doi.org/10.1103/PhysRevA.95.032330
Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grant Nos. 62271189, 12071110, 11701135, funded by Science and Technology Project of Hebei Education Department under Grant No. ZD2021066, the Hebei Central Guidance on Local Science and Technology Development Foundation of China under Grant No. 236Z7604G, supported by National Pre-research Funds of Hebei GEO University in 2023 (Grant KY202316), PhD Research Startup Foundation of Hebei GEO University (Grant BQ201615).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Xing, Y., Hong, Y., Gao, L. et al. Efficient detection for quantum states containing fewer than k unentangled particles in multipartite quantum systems. Quantum Inf Process 23, 24 (2024). https://doi.org/10.1007/s11128-023-04233-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-023-04233-5