Skip to main content

Advertisement

Log in

Efficient detection for quantum states containing fewer than k unentangled particles in multipartite quantum systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we mainly investigate the detection of quantum states containing fewer than k unentangled particles in multipartite quantum systems. Based on inequalities of nonlinear operators, we derive two families of criteria for detecting N-partite quantum states containing fewer than k unentangled particles. By concrete examples, we point out that both families of criteria can identify some quantum states containing fewer than k unentangled particles that cannot be tested by known criteria. This demonstrates the effectiveness of our criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935). https://doi.org/10.1103/PhysRev.47.777

    Article  ADS  Google Scholar 

  2. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989). https://doi.org/10.1103/PhysRevA.40.4277

    Article  ADS  Google Scholar 

  3. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001). https://doi.org/10.1103/PhysRevLett.86.5188

    Article  ADS  Google Scholar 

  4. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002). https://doi.org/10.1103/revmodphys.74.145

    Article  ADS  Google Scholar 

  5. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7 (2014). https://doi.org/10.1016/j.tcs.2014.05.025

    Article  MathSciNet  Google Scholar 

  6. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999). https://doi.org/10.1103/PhysRevA.59.1829

    Article  ADS  MathSciNet  Google Scholar 

  7. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992). https://doi.org/10.1103/PhysRevLett.69.2881

    Article  ADS  MathSciNet  Google Scholar 

  8. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  Google Scholar 

  9. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996). https://doi.org/10.1103/PhysRevLett.77.1413

    Article  ADS  MathSciNet  Google Scholar 

  10. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997). https://doi.org/10.1016/S0375-9601(97)00416-7

    Article  ADS  MathSciNet  Google Scholar 

  11. Chen, K., Wu, L.A.: The generalized partial transposition criterion for separability of multipartite quantum states. Phys. Lett. A 306, 14 (2002). https://doi.org/10.1016/S0375-9601(02)01538-4

    Article  ADS  MathSciNet  Google Scholar 

  12. Chen, K., Wu, L.A.: A matrix realignment method for recognizing entanglement. Quantum Inf. Comput. 3, 193 (2003). https://doi.org/10.5555/2011534.2011535

    Article  MathSciNet  Google Scholar 

  13. Rudolph, O.: Some properties of the computable cross-norm criterion for separability. Phys. Rev. A 67, 032312 (2003). https://doi.org/10.1103/PhysRevA.67.032312

    Article  ADS  MathSciNet  Google Scholar 

  14. Hofmann, H.F., Takeuchi, S.: Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A 68, 032103 (2003). https://doi.org/10.1103/PhysRevA.68.032103

    Article  ADS  MathSciNet  Google Scholar 

  15. Zhang, C.J., Nha, H., Zhang, Y.S., Guo, G.C.: Entanglement detection via tighter local uncertainty relations. Phys. Rev. A 81, 012324 (2010). https://doi.org/10.1103/PhysRevA.81.012324

    Article  ADS  Google Scholar 

  16. Gühne, O.: Characterizing entanglement via uncertainty relations. Phys. Rev. Lett. 92, 117903 (2004). https://doi.org/10.1103/PhysRevLett.92.117903

    Article  ADS  Google Scholar 

  17. Gühne, O., Hyllus, P., Gittsovich, O., Eisert, J.: Covariance matrices and the separability problem. Phys. Rev. Lett. 99, 130504 (2007). https://doi.org/10.1103/PhysRevLett.99.130504

    Article  ADS  MathSciNet  Google Scholar 

  18. Li, N., Luo, S.L.: Entanglement detection via quantum Fisher information. Phys. Rev. A 88, 014301 (2013). https://doi.org/10.1103/PhysRevA.88.014301

    Article  ADS  Google Scholar 

  19. Chen, K., Albeverio, S., Fei, S.M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95, 040504 (2005). https://doi.org/10.1103/PhysRevLett.95.040504

    Article  ADS  MathSciNet  Google Scholar 

  20. Simon, R.: Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000). https://doi.org/10.1103/PhysRevLett.84.2726

    Article  ADS  Google Scholar 

  21. Nha, H., Zubairy, M.S.: Uncertainty inequalities as entanglement criteria for negative partial-transpose states. Phys. Rev. Lett. 101, 130402 (2008). https://doi.org/10.1103/PhysRevLett.101.130402

    Article  ADS  Google Scholar 

  22. Schwonnek, R., Dammeier, L., Werner, R.F.: State-independent uncertainty relations and entanglement detection in noisy systems. Phys. Rev. Lett. 119, 170404 (2017). https://doi.org/10.1103/PhysRevLett.119.170404

    Article  ADS  Google Scholar 

  23. Rastegin, A.E.: On uncertainty relations and entanglement detection with mutually unbiased measurements. Open Syst. Inf. Dyn. 22, 1550005 (2015). https://doi.org/10.1142/s1230161215500055

    Article  MathSciNet  Google Scholar 

  24. Sarbicki, G., Scala, G., Chruściński, D.: Family of multipartite separability criteria based on a correlation tensor. Phys. Rev. A 101, 012341 (2020). https://doi.org/10.1103/PhysRevLett.101.012341

    Article  ADS  MathSciNet  Google Scholar 

  25. Wang, K.K., Wei, Z.W., Fei, S.M.: Operation entanglement detection based on \(\Lambda \)-moments. Eur. Phys. J. Plus 137, 1378 (2022). https://doi.org/10.1140/epjp/s13360-022-03617-3

    Article  Google Scholar 

  26. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 479, 1 (2009). https://doi.org/10.1016/j.physrep.2009.02.004

    Article  ADS  MathSciNet  Google Scholar 

  27. Gao, T., Hong, Y.: Separability criteria for several classes of n-partite quantum states. Eur. Phys. J. D 61, 765 (2011). https://doi.org/10.1140/epjd/e2010-10432-4

    Article  ADS  Google Scholar 

  28. Gao, T., Hong, Y.: Detection of genuinely entangled and nonseparable \(n\)-partite quantum states. Phys. Rev. A 82, 062113 (2010). https://doi.org/10.1103/PhysRevA.82.062113

    Article  ADS  Google Scholar 

  29. Hong, Y., Gao, T., Yan, F.L.: Measure of multipartite entanglement with computable lower bounds. Phys. Rev. A 86, 062323 (2012). https://doi.org/10.1103/PhysRevA.86.062323

    Article  ADS  Google Scholar 

  30. Gao, T., Hong, Y., Lu, Y., Yan, F.L.: Efficient \(k\)-separability criteria for mixed multipartite quantum states. Europhys. Lett. 104, 20007 (2013). https://doi.org/10.1209/0295-5075/104/20007

    Article  ADS  Google Scholar 

  31. Gabriel, A., Hiesmayr, B.C., Huber, M.: Criterion for K-separability in mixed multipartite states. Quant. Inf. Comp. 10, 829 (2010). https://doi.org/10.1134/S0032946010030051

    Article  MathSciNet  Google Scholar 

  32. Gao, T., Yan, F.L., van Enk, S.J.: Permutationally invariant part of a density matrix and nonseparability of \(N\)-qubit states. Phys. Rev. Lett. 112, 180501 (2014). https://doi.org/10.1103/PhysRevLett.112.180501

    Article  ADS  Google Scholar 

  33. Ma, Z.H., Chen, Z.H., Chen, J.L., Spengler, C., Gabriel, A., Huber, M., Briegel, H.J.: Measure of genuine multipartite entanglement with computable lower bounds. Phys. Rev. A 83, 062325 (2010). https://doi.org/10.1103/PhysRevA.83.062325

    Article  ADS  Google Scholar 

  34. Huber, M., Mintert, F., Gabriel, A., Hiesmayr, B.C.: Detection of high-dimensional genuine multipartite entanglement of mixed states. Phys. Rev. Lett. 104, 210501 (2010). https://doi.org/10.1103/PhysRevLett.104.210501

    Article  ADS  Google Scholar 

  35. Hong, Y., Luo, S.L., Song, H.T.: Detecting \(k\)-nonseparability via quantum Fisher information. Phys. Rev. A 91, 042313 (2015). https://doi.org/10.1103/PhysRevA.91.042313

    Article  ADS  Google Scholar 

  36. Hong, Y., Luo, S.L.: Detecting k-nonseparability via local uncertainty relations. Phys. Rev. A 93, 042310 (2016). https://doi.org/10.1103/PhysRevA.93.042310

    Article  ADS  Google Scholar 

  37. Xu, W., Zheng, Z.J., Zhu, C.J., Fei, S.M.: Measure and detection of genuine multipartite entanglement for \(n\)-partite systems. Eur. Phys. J. Plus 136, 5 (2021). https://doi.org/10.1140/epjp/s13360-020-01036-w

    Article  Google Scholar 

  38. Wang, Y.Z., Hou, J.C.: Some nesessary and sufficient conditions for \(k\)-separability of multipartite pure states. Quant. Inf. Proc. 14, 3711 (2015). https://doi.org/10.1007/s11128-015-1074-1

    Article  Google Scholar 

  39. Chen, Z.Q.: Wigner-Yanase skew information as tests for quantum entanglement. Phys. Rev. A 71, 052302 (2005). https://doi.org/10.1103/PhysRevA.71.052302

    Article  ADS  Google Scholar 

  40. Hyllus, P., Laskowski, W., Krischek, R., Schwemmer, C., Wieczorek, W., Weinfurter, H., Pezzé, L., Smerzi, A.: Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012). https://doi.org/10.1103/PhysRevA.85.022321

    Article  ADS  Google Scholar 

  41. Tóth, G.: Multipartite entanglement and high-precision metrology. Phys. Rev. A 85, 022322 (2012). https://doi.org/10.1088/1674-1056/abfb5e

    Article  ADS  Google Scholar 

  42. Gessner, M., Pezzè, L., Smerzi, A.: Efficient entanglement criteria for discrete, continuous, and hybrid variables. Phys. Rev. A 94, 020101 (2016). https://doi.org/10.1103/PhysRevA.94.020101

    Article  ADS  Google Scholar 

  43. Akbari-Kourbolagh, Y., Azhdargalam, M.: Entanglement criterion for multipartite systems based on quantum Fisher information. Phys. Rev. A 99, 012304 (2019). https://doi.org/10.1103/PhysRevA.99.012304

    Article  ADS  Google Scholar 

  44. Vitagliano, G., Hyllus, P., Egusquiza, I.L., Tóth, G.: Spin squeezing inequalities for arbitrary spin. Phys. Rev. Lett. 107, 240502 (2011). https://doi.org/10.1103/PhysRevLett.107.240502

    Article  ADS  Google Scholar 

  45. Hofmann, H.F., Takeuchi, S.: Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A 68, 032103 (2003). https://doi.org/10.1103/PhysRevA.68.032103

    Article  ADS  MathSciNet  Google Scholar 

  46. Tóth, G., Knapp, C., Gühne, O., Briegel, H.J.: Spin squeezing and entanglement. Phys. Rev. A 79, 042334 (2009). https://doi.org/10.1103/PhysRevA.79.042334

    Article  ADS  Google Scholar 

  47. Hong, Y., Qi, X.F., Gao, T., Yan, F.L.: Detection of the quantum states containing at most \(k\)-1 unentangled particles. Chin. Phys. B 30, 100306 (2021). https://doi.org/10.1088/1674-1056/abfb5e

    Article  ADS  Google Scholar 

  48. Gühne, O., Tóth, G., Briegel, H.J.: Multipartite entanglement in spin chains. New J. Phys. 7, 229 (2005). https://doi.org/10.1088/1367-2630/7/1/229

    Article  Google Scholar 

  49. Tóth, G., Apellaniz, I.: Quantum metrology from a quantum information science perspective. J. Phys. A: Math. Theor. 47, 424006 (2014). https://doi.org/10.1088/1751-8113/47/42/424006

    Article  ADS  MathSciNet  Google Scholar 

  50. Apellaniz, I., Kleinmann, M., Gühne, O., Tóth, G.: Optimal witnessing of the quantum Fisher information with few measurements. Phys. Rev. A 95, 032330 (2017). https://doi.org/10.1103/PhysRevA.95.032330

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 62271189, 12071110, 11701135, funded by Science and Technology Project of Hebei Education Department under Grant No. ZD2021066, the Hebei Central Guidance on Local Science and Technology Development Foundation of China under Grant No. 236Z7604G, supported by National Pre-research Funds of Hebei GEO University in 2023 (Grant KY202316), PhD Research Startup Foundation of Hebei GEO University (Grant BQ201615).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Gao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Y., Hong, Y., Gao, L. et al. Efficient detection for quantum states containing fewer than k unentangled particles in multipartite quantum systems. Quantum Inf Process 23, 24 (2024). https://doi.org/10.1007/s11128-023-04233-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04233-5

Keywords

Navigation