Abstract
Entanglement concentration protocol (ECP), as a practical technique, can be use to preclude degraded fidelity and improve security in long-haul quantum communication. We propose an efficient ECP for less-entangled unknown W states with simple linear-optics elements and effective single-photon detectors, resorting to time-delay degree of freedom. Moreover, in contrast to previous ECPs proposed for W states, the scheme has the advantages over requiring less quantum resource without auxiliary photons, comparatively simplified circuits, involving neither post-selection techniques nor photon-number-resolving detectors to distinguish the parity outcome, and being provided with a higher success probability by reusing the less-entangled states.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Am. J. Phys. 70, 558 (2002)
Wu, Y.M., Fan, G., Du, F.F.: Error-detected three-photon hyperparallel Toffoli gate with state-selective reflection. Front. Phys. 17, 51502 (2022)
Du, F.F., Ma, M., Ren, X.M., Fan, G., Du, X.S., Li, L.H., Fan, Z.G., Guo, J.: Deterministic conversion of hyperentangled states with error-heralded quantum units. Ann. Phys. 2300455 (2024)
Cao, C., Zhang, L., Han, Y.H., Yin, P.P., Fan, L., Duan, Y.W., Zhang, R.: Complete and faithful hyperentangled-Bell-state analysis of photon systems using a failure-heralded and fidelity-robust quantum gate. Opt. Express 28, 2857 (2020)
Du, F.F., Ren, X.M., Fan, Z.G., Li, L.H., Du, X.S., Ma, M., Fan, G., Guo, J.: Decoherence-free-subspace-based deterministic conversions for entangled states with heralded robust-fidelity quantum gates. Opt. Express 32, 1686 (2024)
Zhou, Y.R., Zhang, Q.F., Liu, F.F., Han, Y.H., Gao, Y.P., Fan, L., Zhang, R., Cao, C.: Controllable nonreciprocal phonon laser in a hybrid photonic molecule based on directional quantum squeezing. Opt. Express 32, 2786 (2024)
Li, T., Wang, Z.K., Xia, K.Y.: Multipartite quantum entanglement creation for distant stationary systems. Opt. Express 28, 1316 (2020)
Du, F.F., Ren, X.M., Ma, M., Fan, G.: Complete conversion of KLM entanglement to GHZ entanglement with error-detected quantum devices. Appl. Phys. Express 16, 102006 (2023)
Han, Y.H., Cao, C., Fan, L., Zhang, R.: Heralded high-fidelity quantum hyper-CNOT gates assisted by charged quantum dots inside single-sided optical microcavities. Opt. Express 29, 20045 (2021)
Du, F.F., Wu, Y.M., Fan, G.: Refined quantum gates for \(\Lambda \)-type atom-photon hybrid systems. Adv. Quantum Technol. 6, 2300090 (2023)
Du, F.F., Wu, Y.M., Fan, G., Ma, Z.M.: High-fidelity and low-cost hyperparallel quantum gates for photon systems via \(\Lambda \)-type systems. Ann. Phys. 535, 2200507 (2023)
Zhang, XYu., Cao, C., Gao, Y.P., Fan, L., Zhang, R., Wang, C.: Generation and manipulation of phonon lasering in a two-drive cavity magnomechanical system. New J. Phys. 25, 053039 (2023)
Du, F.F., Fan, G., Wu, Y.M.: Implementations of heralded quantum Toffoli and Fredkin gates assisted by waveguide-mediated photon scattering. Quantum Inf. Process 22, 55 (2023)
Du, F.F., Shi, Z.R.: Robust hybrid hyper-controlled-not gates assisted by an input-output process of low-Q cavities. Opt. Express 27, 17493 (2019)
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7 (2014)
Kwek, L.C., Cao, L., Luo, W., Wang, Y.X., Sun, S.H., Wang, X.B., Liu, A.Q.: Chip-based quantum key distribution. AAPPS Bull. 31, 15 (2021)
Huang, J.S., Chen, X.J., Li, X.D., Wang, J.W.: Chip-based photonic graph states. AAPPS Bull. 33, 14 (2023)
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)
Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)
Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)
Li, T., Long, G.L.: Quantum secure direct communication based on single-photon Bell-state measurement. New J. Phys. 22, 063017 (2020)
Qi, Z.T., Li, Y.H., Huang, Y.W., Feng, J., Zheng, Y.L., Chen, X.F.: A 15-user quantum secure direct communication network. Light Sci. Appl. 10, 183 (2021)
Long, G.L., Zhang, H.R.: Drastic increase of channel capacity in quantum secure direct communication using masking. Sci. Bull. 66, 1267 (2021)
Sheng, Y.B., Zhou, L., Long, G.L.: One-step quantum secure direct communication. Sci. Bull. 67, 367 (2022)
Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. 61, 90312 (2018)
Wu, X.D., Zhou, L., Zhong, W., Sheng, Y.B.: High-capacity measurement-device-independent quantum secure direct communication. Quantum Inf. Process. 19, 354 (2020)
Hong, Y.P., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-device-independent three-party quantum secure direct communication. Quantum Inf. Process. 22, 111 (2023)
Cao, Z.W., Lu, Y., Chai, G., Yu, H., Liang, K.X., Wang, L.: Realization of quantum secure direct communication with continuous variable. Research 6, 0193 (2023)
Pan, D., Song, X.T., Long, G.L.: Free-space quantum secure direct communication: basics, progress, and outlook. Adv. Devices Instrum. 4, 0004 (2023)
Wu, J.W., Long, G.L., Hayashi, M.: Quantum secure direct communication with private dense coding using a general preshared quantum state. Phys. Rev. Appl. 17, 064011 (2022)
Li, X.J., Pan, D., Long, G.L., Hanzo, L.: Single-photon-memory measurement-device-independent quantum secure direct communication-part I: its fundamentals and evolution. IEEE Commun. Lett. 27, 1055 (2023)
Li, X.J., Pan, D., Long, G.L., Hanzo, L.: Single-photon-memory measurement-device-independent quantum secure direct communication-part II: a practical protocol and its secrecy capacity. IEEE Commun. Lett. 27, 1060 (2023)
Sun, Z.Z., Pan, D., Ruan, D., Long, G.L.: One-sided measurement-device-independent practical quantum secure direct communication. J. Light. 41, 4680 (2023)
Cao, C., Duan, Y.W., Chen, X., Zhang, R., Wang, T.J., Wang, C.: Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system. Opt. Express 25, 16931 (2017)
Wang, B.X., Tao, M.J., Ai, Q., Xin, T., Lambert, N., Ruan, D., Cheng, Y.C., Nori, F., Deng, F.G., Long, G.L.: Efficient quantum simulation of photosynthetic light harvesting. NPJ Quantum Inf. 4, 52 (2018)
Jiang, G.L., Yuan, J.B., Liu, W.Q., Wei, H.R.: Efficient and deterministic high-dimensional controlled-swap gates on hybrid linear optical systems with high fidelity. Phys. Rev. Appl. 21, 014001 (2024)
Ai, Q., Li, P.B., Qin, W., Zhao, J.X., Sun, C.P., Nori, F.: The NV metamaterial: tunable quantum hyperbolic metamaterial using nitrogen vacancy centers in diamond. Phys. Rev. B 22, 014109 (2021)
Liu, W.Q., Wei, H.R.: Linear optical universal quantum gates with higher success probabilities. Adv. Quantum Technol. 6, 2300009 (2023)
Liu, W.Q., Wei, H.R., Kwek, L.C.: Universal quantum multi-qubit entangling gates with auxiliary spaces. Adv. Quantum Technol. 5, 2100136 (2022)
Liu, W.Q., Wei, H.R.: Optimal synthesis of the Fredkin gate in a multilevel system. New J. Phys. 22, 063026 (2020)
Liu, W.Q., Wei, H.R., Kwek, L.C.: Low-cost Fredkin gate with auxiliary space. Phys. Rev. Appl. 14, 054057 (2020)
Huang, H.L., Xu, X.Y., Guo, C., Tian, G.J., Wei, S.J., Sun, X.M., Bao, W.S., Long, G.L.: Near-term quantum computing techniques: variational quantum algorithms, error mitigation, circuit compilation, benchmarking and classical simulation. Sci. China Phys. Mech 66, 250302 (2023)
Long, G.L., Pan, D., Sheng, Y.B., Xue, Q.K., Lu, J.H., Hanzo, L.: An evolutionary pathway for the quantum internet relying on secure classical repeaters. IEEE Netw. 36, 82 (2022)
Du, F.F., Ren, X.M., Ma, M., F, G.: Qudit-based high-dimensional controlled-not gate. Opt. Lett. 49, 1229–1232 (2024)
Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)
Du, F.F., Liu, Y.T., Shi, Z.R., Liang, Y.X., Tang, J., Liu, J.: Efficient hyperentanglement purification for three-photon systems with the fidelity-robust quantum gates and hyperentanglement link. Opt. Express 27, 27046 (2019)
Yan, P.S., Zhou, L., Zhong, W., Sheng, Y.B.: Feasible measurement-based entanglement purification in linear optics. Opt. Express 29, 9363 (2021)
Yan, P.S., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-based entanglement purification for entangled coherent states. Front. Phys. 17, 21501 (2022)
Huang, C.X., Hu, X.M., Liu, B.H., Zhou, L., Sheng, Y.B., Li, C.F., Guo, G.C.: Experimental one-step deterministic polarization entanglement purification. Sci. Bull. 67, 593 (2022)
Yan, P.S., Zhou, L., Zhong, W., Sheng, Y.B.: Advances in quantum entanglement purification. Sci. China Phys. Mech. 66, 250301 (2023)
Wang, P., Zhang, Z., Yu, C.Q., Yuan, R.Y., Du, F.F., Ren, B.C.: Measurement-based hyperentanglement distillation for lossy and distortion photon state. Ann. Phys. 535, 2200505 (2023)
Wu, X.D., Zhou, L., Zhong, W., Sheng, Y.B.: Purification of the concatenated Greenberger-Horne-Zeilinger state with linear optics. Quantum Inf. Process. 17, 255 (2018)
Zhou, L., Liu, Z.K., Xu, Z.X., Cui, Y.L., Ran, H.J., Sheng, Y.B.: Economical multi-photon polarization entanglement purification with Bell state. Quantum Inf. Process. 20, 257 (2021)
Luo, C.C., Zhou, L., Zhong, W., Sheng, Y.B.: Purification for hybrid logical qubit entanglement. Quantum Inf. Process. 21, 300 (2022)
Zhou, L., Zhong, W., Sheng, Y.B.: Purification of the residual entanglement. Opt. Express 28, 2291 (2020)
Wang, P., Yu, C.Q., Wang, Z.X., Yuan, R.Y., Du, F.F., Ren, B.C.: Hyperentanglement-assisted hyperdistillation for hyper-encoding photon system. Front. Phys. 17, 31501 (2021)
Du, F.F., Fan, G., Wu, Y.M., Ren, B.C.: Faithful and efficient hyperentanglement purification for spatial-polarization-time-bin photon system. Chin. Phys. B 32, 060304 (2023)
Fan, G., Ren, X.M., Du, F.F.: Compact entanglement concentration for three-electron-spin W states with error-detected parity-check gates. Laser Phys. 33, 085202 (2023)
Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)
Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)
Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. Opt. Express 22, 6547 (2014)
Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)
Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)
Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)
Han, K.Q., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-device-independent quantum dialogue based on hyperentanglement. Quantum Inf. Process. 20, 280 (2021)
Li, Y.P., Zhang, J., Xu, B.W., Zhou, L., Zhong, W., Sheng, Y.B.: Entanglement-assisted noiseless linear amplification for arbitrary two-photon polarization-time-bin hyperentanglement. Quantum Inf. Process. 19, 261 (2020)
Takashi, Y., Masato, K., Nobuyuki, I.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 022311 (2001)
Yang, G., Zhang, Y.S., Yang, Z.R., Zhou, L., Sheng, Y.B.: Linear-optical heralded amplification protocol for two-photon spatial-mode-polarization hyperentangled state. Quantum Inf. Process. 18, 317 (2019)
Du, F.F., Fan, G., Ren, X.M., Ma, M.: Deterministic hyperparallel control gates with weak kerr effects. Adv. Quantum Technol. 6, 2300201 (2023)
Zheng, Y.B., Zhou, X.J., Wei, H.R., Du, F.F., Song, G.Z.: Schemes for fusing photonic W-state simultaneously without qubit loss via weak cross-Kerr nonlinearities. Quantum Inf. Process. 20, 273 (2021)
Du, F.F., Fan, G., Wu, Y.M.: Refined Fredkin gate assisted by cross-Kerr nonlinearity. Opt. Commun 546, 129795 (2023)
Jiang, G.L., Liu, W.Q., Wei, H.R.: Heralded and high-efficient entanglement concentrations based on linear optics assisted by time-delay degree of freedom. Opt. Express 30, 47836 (2022)
Jiang, G.L., Liu, W.Q., Wei, H.R.: Practically enhanced hyperentanglement concentration for polarization-spatial hyperentangled bell states with linear optics and common single-photon detectors. Phys. Rev. A 19, 034044 (2023)
Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)
Zhou, X.J., Liu, W.Q., Zheng, Y.B., Wei, H.R., Du, F.F.: Complete hyperentangled bell states analysis for polarization-spatial-time-bin degrees of freedom with unity fidelity. Ann. Phys. 534, 2100509 (2022)
Ding, S.P., Zhou, L., Zhong, W., Sheng, Y.B.: Construction of quantum gates for concatenated Greenberger-Horne-Zeilinger-type logic qubit. Quantum Inf. Process. 17, 306 (2018)
Zhou, X.J., Liu, W.Q., Wei, H.R., Zheng, Y.B., Du, F.F.: Deterministic and complete hyperentangled Bell states analysis assisted by frequency and time interval degrees of freedom. Front. Phys. 17, 41502 (2022)
Xu, J.S., Li, C.F.: Quantum integrated circuit: classical characterization. Sci. Bull. 60, 141 (2015)
Cao, C., Chen, X., Duan, Y.W., Fan, L., Zhang, R., Wang, T.J., Wang, C.: Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements. Sci. China Phys. Mech. 59, 100315 (2016)
Sheng, Y.B., Pan, J., Guo, R., Zhou, L., Wang, L.: Efficient N-particle W state concentration with different parity check gates. Sci. China Phys. Mech. 58, 060301 (2015)
Du, F.F., Deng, F.G.: Heralded entanglement concentration for photon systems with linear-optical elements. Sci. China Phys. Mech. 58, 040303 (2015)
Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)
Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Du, FF., Ma, M., Ren, XM. et al. Entanglement concentration of W state using linear optics with a higher success probability. Quantum Inf Process 23, 134 (2024). https://doi.org/10.1007/s11128-024-04334-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04334-9