Skip to main content

Advertisement

Log in

T-count and T-depth efficient fault-tolerant quantum arithmetic and logic unit

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum circuits are one of the best platforms to implement quantum algorithms. Concerning fault-tolerant quantum circuit, the Clifford + T gate set supports quantum circuits against decoherence error. However, they cause physical resource overheads like many qubits and the use of T gates as a high-cost computing element. This work focuses on low T-cost fault tolerant quantum ALU implementation using Clifford + T gate set. Three new different designs of quantum ALU are proposed by introducing a new quantum logic unit, and new low-cost fault tolerant implementations of full adder and subtractor circuits. We present a novel lemma in synthesizing quantum NCV-based circuits to Clifford + T quantum circuits. This lemma shows how an NCV-based structure with less CNOT layer can lead to an improvement in T-count and T-depth criteria in Clifford + T equivalent circuit. We analyze the effect of applying our proposed lemma in implementing low-cost fault tolerant Clifford + T circuits by some examples on adder and subtractors and ALUs. Comparison of the designs shows 50%, 40%, 36%, and 69% superior functionality of our proposed ALU module in terms of T-count, T-depth, number of qubits, and number of calculated operations compared to the existing counterpart, respectively. The proposed lemma can be used as a simplification step in quantum circuit synthesis algorithms and can be extended to use in quantum synthesis tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data and materials availability

No additional data or materials are available.

References

  1. Moore, G.E.: Gramming more components onto integrated circuits. Electronics 38, 8 (1965)

    Google Scholar 

  2. Zarandi, A.D., Reshadinezhad, M.R., Rubio, A.: A systematic method to design efficient ternary high performance CNTFET-based logic cells. IEEE Access 8, 58585–58593 (2020). https://doi.org/10.1109/ACCESS.2020.2982738

    Article  Google Scholar 

  3. Fatemieh, S.E., Reshadinezhad, M.R., TaheriNejad, N.: Fast and compact serial imply-based approximate full adders applied in image processing. IEEE J. Emerg. Sel. Top. Circuits Syst. 13(1), 175–188 (2023). https://doi.org/10.1109/JETCAS.2023.3241012

    Article  ADS  Google Scholar 

  4. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961). https://doi.org/10.1147/rd.53.0183

    Article  MathSciNet  Google Scholar 

  5. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973). https://doi.org/10.1147/rd.176.0525

    Article  MathSciNet  Google Scholar 

  6. Biswal, L., Bandyopadhyay, C., Ghosh, S., Rahaman, H.: Fault-tolerant implementation of quantum arithmetic and logical unit (QALU) using Clifford+T-group, pp. 833–844. Springer, (2021). https://doi.org/10.1007/978-981-15-7834-2_78

  7. Paler, A., Polian, I., Nemoto, K., Devitt, S.J.: Fault-tolerant, high-level quantum circuits: form, compilation and description. Quantum Sci. Technol. 2(2), 025003 (2017). https://doi.org/10.1088/2058-9565/aa66eb

    Article  ADS  Google Scholar 

  8. Zhou, X., Leung, D.W., Chuang, I.L.: Methodology for quantum logic gate construction. Phys. Rev. A 62, 052316 (2000). https://doi.org/10.1103/PhysRevA.62.052316

    Article  ADS  Google Scholar 

  9. Thapliyal, H., Muñoz-Coreas, E., Khalus, V.: Quantum circuit designs of carry lookahead adder optimized for t-count t-depth and qubits. Sustain. Comput. Inform. Syst. 29, 100457 (2021)

    Google Scholar 

  10. Amy, M., Maslov, D., Mosca, M.: Polynomial-time T-depth optimization of Clifford+T circuits via matroid partitioning. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(10), 1476–1489 (2014). https://doi.org/10.1109/TCAD.2014.2341953

    Article  Google Scholar 

  11. Haghparast, M., Bolhassani, A.: Optimization approaches for designing quantum reversible arithmetic logic unit. Int. J. Theor. Phys. 55, 1423–1437 (2016). https://doi.org/10.1007/s10773-015-2782-0

    Article  MathSciNet  Google Scholar 

  12. Deeptha, A., Muthanna, D., Dhrithi, M., Pratiksha, M., Kariyappa, B. S.: Design and optimization of 8 bit ALU using reversible logic. 1632–1636 (2016). https://ieeexplore.ieee.org/abstract/document/7808109

  13. Kamaraj, A., Marichamy, P.: Design and implementation of arithmetic and logic unit (ALU) using novel reversible gates in quantum cellular automata. 1–8 (2017). https://ieeexplore.ieee.org/document/8014578

  14. Khatter, P., Pandey, N., Gupta, K.: An arithmetic and logical unit using reversible gates. 476–480 (2018). https://ieeexplore.ieee.org/abstract/document/8675034

  15. Navimipour, N.J., Ahmadpour, S.-S., Yalcin, S.: A nano-scale arithmetic and logic unit using a reversible logic and quantum-dots. J. Supercomput. 80(1), 1–18 (2023). https://doi.org/10.1007/s11227-023-05491-x

    Article  Google Scholar 

  16. Venna, R.K.R., Jayakumar, G.D.: Design of novel area-efficient coplanar reversible arithmetic and logic unit with an energy estimation in quantum-dot cellular automata. J. Supercomput. 79(2), 1908–1925 (2023). https://doi.org/10.1007/s11227-022-04740-9

    Article  Google Scholar 

  17. Aliabadian, R., Golsorkhtabaramiri, M., Heikalabad, S.R., Sohrabi, M.K.: Design of an ultra-high-speed coplanar QCA reversible ALU with a novel coplanar reversible full adder based on MTSG. Eur. Phys. J. Plus 138(5), 481 (2023). https://doi.org/10.1140/epjp/s13360-023-04007-z

    Article  Google Scholar 

  18. Aliabadian, R., Golsorkhtabaramiri, M., Heikalabad, S.R., Sohrabi, M.K.: Design of a reversible ALU using a novel coplanar reversible full adder and mf gate in QCA nanotechnology. Opt. Quantum Electron. 55(2), 191 (2023). https://doi.org/10.1007/s11082-022-04382-4

    Article  Google Scholar 

  19. Pahuja, S., Kaur, G.: Design of parity preserving arithmetic and logic unit using reversible logic gates. 1–9 (2021). https://ieeexplore.ieee.org/abstract/document/9498539

  20. Moghimi, S., Reshadinezhad, M.R.: A novel 4\(\times \) 4 universal reversible gate as a cost efficient full adder/subtractor in terms of reversible and quantum metrics. Int. J. Modern Edu. Comput. Sci. 7(11), 28–34 (2015)

    Google Scholar 

  21. Bhat, H.A., Khanday, F.A., Kaushik, B.K.: Optimized quantum implementation of novel controlled adders/subtractors. Quantum Inf. Process. 22, 174 (2023). https://doi.org/10.1007/s11128-023-03896-4

    Article  ADS  MathSciNet  Google Scholar 

  22. Li, H.-S., Fan, P., Xia, H., Peng, H., Long, G.-L.: Efficient quantum arithmetic operation circuits for quantum image processing. Sc. China Phys. Mech. Astron. 63, 1–13 (2020). https://doi.org/10.1007/s11433-020-1582-8

    Article  Google Scholar 

  23. Moghimi, S., Reshadinezhad, M.R., Rubio, A.: Toward designing high-speed cost-efficient quantum reversible carry select adders. IEEE Trans. Emerg. Top. Comput. 1–15 (2023). https://doi.org/10.1109/TETC.2023.3332426

  24. Acampora, G., Di Martino, F., Massa, A., Schiattarella, R., Vitiello, A.: D-NISQ: a reference model for distributed noisy intermediate-scale quantum computers. Inf. Fusion 89, 16–28 (2023)

    Article  Google Scholar 

  25. Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Article  ADS  Google Scholar 

  26. Buhrman, H., et al.: New limits on fault-tolerant quantum computation. 411–419 (2006)

  27. Thapliyal, H., MuNoz-Coreas, E., Varun, T.S.S., Humble, T.S.: Quantum circuit designs of integer division optimizing t-count and t-depth. IEEE Trans. Emerg. Top. Comput. 9(2), 1045–1056 (2021). https://doi.org/10.1109/TETC.2019.2910870

    Article  Google Scholar 

  28. Moallem, P., Ehsanpour, M., Bolhasani, A., Montazeri, M.: Optimized reversible arithmetic logic units. J. Electron. 31, 394–405 (2014). https://doi.org/10.1007/s11767-014-4081-y

    Article  Google Scholar 

  29. Gayathri, S.S., et al.: T-count optimized quantum circuit for floating point addition and multiplication. Quantum Inf. Process. 20, 378 (2021). https://doi.org/10.1007/s11128-021-03296-6

    Article  ADS  Google Scholar 

  30. Orts, F., et al.: Efficient design of a quantum absolute-value circuit using Clifford+T gates. J. Supercomput. 79, 12656–12670 (2023). https://doi.org/10.1007/s11227-023-05162-x

    Article  Google Scholar 

  31. Orts, F., Filatovas, E., Ortega, G., SanJuan-Estrada, J.F., Garzón, E.M.: Improving the number of \(T\) gates and their spread in integer multipliers on quantum computing. Phys. Rev. A 107, 042621 (2023). https://doi.org/10.1103/PhysRevA.107.042621

    Article  ADS  MathSciNet  Google Scholar 

  32. Xu, L., Xu, J., Qian, D., Hu, G.: Analysis on simplified method of IoT-based HHL algorithm corresponding quantum circuit for quantum computer application. Period. Polytech. Electr. Eng. Comput. Sci. 2023, 1063505 (2023). https://doi.org/10.1155/2023/1063505

    Article  Google Scholar 

  33. Mirizadeh, S.M.A., Asghar, P.: Fault-tolerant quantum reversible full adder/subtractor: design and implementation. Optik 253, 168543 (2022). https://doi.org/10.1016/j.ijleo.2021.168543

    Article  Google Scholar 

  34. PourAliAkbar, E., Navi, K., Haghparast, M., Reshadi, M.: Novel optimum parity-preserving reversible multiplier circuits. Circuits Syst. Signal Process. 39, 5148–5168 (2020). https://doi.org/10.1007/s00034-020-01406-w

    Article  Google Scholar 

  35. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21(3–4), 219–253 (1982). https://doi.org/10.1007/BF01857727

    Article  MathSciNet  Google Scholar 

  36. Misra, N.K., Wairya, S., Sen, B.: Design of conservative, reversible sequential logic for cost efficient emerging nano circuits with enhanced testability. Ain Shams Eng. J. 9(4), 2027–2037 (2018)

    Article  Google Scholar 

  37. Thakral, S., Bansal, D.: Novel reversible ALU architecture using DSG gate, pp. 149–156. Springer, (2020). https://doi.org/10.1007/978-981-15-1518-7_12

  38. Norouzi, M., Heikalabad, S.R., Salimzadeh, F.: A reversible ALU using HNG and Ferdkin gates in QCA nanotechnology. Int. J. Circuit Theory Appl. 48(8), 1291–1303 (2020). https://doi.org/10.1002/cta.2799

    Article  Google Scholar 

  39. Miller, D.M., Soeken, M., Drechsler, R.: Mapping NCV circuits to optimized Clifford+ t circuits, pp. 163–175. Springer, (2014). https://doi.org/10.1007/978-3-319-08494-7_13

  40. Muñoz-Coreas, E., Thapliyal, H. Everything you always wanted to know about quantum circuits. (2022) arXiv:2208.11725

  41. Zhou, R.-G., Li, Y.-C., Zhang, M.-Q.: Novel designs for fault tolerant reversible binary coded decimal adders. Int. J. Electron. 101(10), 1336–1356 (2014). https://doi.org/10.1080/00207217.2013.832388

    Article  Google Scholar 

  42. Thabah, S.D., Saha, P.: A low quantum cost implementation of reversible binary-coded-decimal adder. Period. Polytech. Electr. Eng. Comput. Sci. 64(4), 343–351 (2020). https://doi.org/10.3311/PPee.15659

    Article  Google Scholar 

  43. Gidney, C.: Halving the cost of quantum addition. Quantum 2, 74 (2018). https://doi.org/10.22331/q-2018-06-18-74

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

SK and SM made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work. SK, MRR, and SM involved in drafting the work or revising it critically for important intellectual content. MRR gave final approval of the version to be published. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved by SK, MRR, and SM.

Corresponding author

Correspondence to Mohammad Reza Reshadinezhad.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshavarz, S., Reshadinezhad, M.R. & Moghimi, S. T-count and T-depth efficient fault-tolerant quantum arithmetic and logic unit. Quantum Inf Process 23, 245 (2024). https://doi.org/10.1007/s11128-024-04456-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04456-0

Keywords

Navigation