Abstract
Monogamy of entanglement is the fundamental property of quantum systems. By using two new entanglement measures based on dual entropy, the \(S^{t}\)-entropy entanglement and \(T^{t}_q\)-entropy entanglement measures, we present the general monogamy relations in multi-qubit quantum systems. We show that these newly derived monogamy inequalities are tighter than the existing ones. Based on these general monogamy relations, we construct the set of multipartite entanglement indicators for N-qubit states, which are shown to work well even for the cases that the usual concurrence-based indicators do not work. Detailed examples are presented to illustrate our results.







Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
No datasets were generated or analyzed during the current study.
References
Jafarpour, M., Hasanvand, F.K., Afshar, D.: Dynamics of entanglement and measurement-induced disturbance for a hybrid qubit-qutrit system interacting with a spin-chain environment: a mean field approach. Commun. Theor. Phys. 67, 27 (2017). https://doi.org/10.1088/0253-6102/67/1/27
Wang, M.Y., Xu, J.Z., Yan, F.L., Gao, T.: Entanglement concentration for polarization-spatial-time-bin hyperentangled Bell states. Europhys. Lett. 123, 60002 (2018). https://doi.org/10.1209/0295-5075/123/60002
Huang, H.L., Goswami, A.K., Bao, W.S., Panigrahi, P.K.: Demonstration of essentiality of entanglement in a Deutsch-like quantum algorithm. Sci. China-Phys. Mech. Astron. 61, 060311 (2018). https://doi.org/10.1007/s11433-018-9175-2
Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62, 46 (2017). https://doi.org/10.1016/j.scib.2016.11.007
Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997). https://doi.org/10.1103/PhysRevLett.78.5022
Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996). https://doi.org/10.1103/physreva.54.3824
Horodecki, R., Horodecki, P., Horodecki, M.: Quantum \(\alpha \)-entropy inequalities: independent condition for local realism? Phys. Lett. A 210, 377–381 (1996). https://doi.org/10.1016/0375-9601(95)00930-2
Gour, G., Bandyopadhyay, S., Sanders, B.C.: Dual monogamy inequality for entanglement. J. Math. Phys. 48, 012108 (2007). https://doi.org/10.1063/1.2435088
Kim, J.S., Sanders, B.C.: Monogamy of multi-qubit entanglement using Rényi entropy. J. Phys. A Math. Theor. 43, 445305 (2010). https://doi.org/10.1088/1751-8113/43/44/445305
Landsberg, P.T., Vedral, V.: Distributions and channel capacities in generalized statistical mechanics. Phys. Lett. A 247, 211–217 (1998). https://doi.org/10.1016/S0375-9601(98)00500-3
Kim, J.S.: Tsallis entropy and entanglement constraints in multiqubit systems. Phys. Rev. A 81, 062328 (2010). https://doi.org/10.1103/PhysRevA.81.062328
Kim, J.S., Sanders, B.C.: Unified entropy, entanglement measures and monogamy of multi-party entanglement. J. Phys. A Math. Theor. 44, 295303 (2011). https://doi.org/10.1088/1751-8113/44/29/295303
Yang, X., Yang, Y.H., Zhao, L.M., Luo, M.X.: A new entanglement measure based dual entropy. Eur. Phys. J. Plus 138, 654 (2023). https://doi.org/10.1140/epjp/s13360-023-04259-9
Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 138, 052306 (2000). https://doi.org/10.1103/PhysRevA.61.052306
Terhal, B.: Is entanglement monogamous? IBM J. Res. Dev. 48, 71–78 (2004). https://doi.org/10.1147/rd.481.0071
Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006). https://doi.org/10.1103/PhysRevLett.96.220503
de Oliveira, T.R., Cornelio, M.F., Fanchini, F.F.: Monogamy of entanglement of formation. Phys. Rev. A 89, 034303 (2014). https://doi.org/10.1103/10.1103/PhysRevA.89.034303
Bai, Y.K., Xu, Y.F., Wang, Z.D.: General monogamy relation for the entanglement of formation in multiqubit systems. Phys. Rev. Lett. 113, 100503 (2014). https://doi.org/10.1103/PhysRevLett.113.100503
Bai, Y.K., Xu, Y.F., Wang, Z.D.: Hierarchical monogamy relations for the squared entanglement of formation in multipartite systems. Phys. Rev. A 90, 062343 (2014). https://doi.org/10.1103/10.1103/PhysRevA.90.062343
Song, W., Bai, Y.K., Yang, M., Cao, Z.L.: General monogamy relation of multi-qubit system in terms of squared Rényi-\(\alpha \) entanglement. Phys. Rev. A 93, 022306 (2016). https://doi.org/10.1103/PhysRevA.93.022306
Luo, Y., Tian, T., Shao, L.H., Li, Y.M.: General monogamy of Tsallis \(q\)-entropy entanglement in multiqubit systems, Phys. Rev. A 93, 062340 (2016). https://doi.org/10.1103/10.1103/PhysRevA.93.062340
Khan, A., ur Rehman, J., Wang, K., Shin, H.: Unified monogamy relations of multipartite entanglement. Sci. Rep. 9, 16419 (2019). https://doi.org/10.1038/s41598-019-52817-y
Christandl, M., Winter, A.: “Squashed entanglement’’: an additive entanglement measure. J. Math. Phys. 45, 829–840 (2004). https://doi.org/10.1063/1.1643788
Zhu, X.N., Fei, S.M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014). https://doi.org/10.1103/PhysRevA.90.024304
Luo, Y., Li, Y.M.: Monogamy of \(\alpha \)-th power entanglement measurement in qubit system. Ann. Phys. 362, 511–520 (2015). https://doi.org/10.1016/j.aop.2015.08.022
Jin, Z.X., Fei, S.M.: Tighter entanglement monogamy relations of qubit systems. Quantum Inf. Process. 16, 77 (2017). https://doi.org/10.1007/s11128-017-1520-3
Jin, Z.X., Li, J., Li, T., Fei, S.M.: Tighter monogamy relations in multiqubit systems. Phys. Rev. A 97, 032336 (2018). https://doi.org/10.1103/PhysRevA.97.032336
Walter, M., Doran, B., Gross, D., Christandl, M.: Entanglement polytopes: multiparticle entanglement from single-particle information. Science 340, 1205 (2013). https://doi.org/10.1126/science.1232957
Seevinck, M. P.: Monogamy of correlations versus monogamy of entanglement. Quantum Inf. Process. 9, 273 (2010). https://doi.org/10.1007/s11128-009-0161-6
Ma, X.S., Dakic, B., Naylor, W., Zeilinger, A., Walther, P.: Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems. Nat. Phys. 7, 399 (2011). https://doi.org/10.1038/NPHYS1919
Verlinde, E., Verlinde, H.: Black hole entanglement and quantum error correction. J. High Energy Phys. 1310, 107 (2013). https://doi.org/10.1007/JHEP10(2013)107
Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
Lad, F., Sanfilippo, G., Agro, G.: Extropy: complementary dual of entropy. Stat. Sci. 30, 40–58 (2015). https://doi.org/10.1214/14-STS430
Rungta, P., Bužek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001). https://doi.org/10.1103/PhysRevA.64.042315
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998). https://doi.org/10.1103/PhysRevLett.80.2245
Jin, Z.X., Qiao, C.F.: Monogamy and polygamy relations of multiqubit entanglement based on unified entropy. Chin. Phys. B 29, 020305 (2020). https://doi.org/10.1088/1674-1056/ab6720
Tao, Y.H., Zheng, K., Jin, Z.X., Fei, S.M.: Tighter monogamy relations for concurrence and negativity in multiqubit systems. Mathematics 11(5), 1159 (2023). https://doi.org/10.3390/math11051159
Acin, A., Andrianov, A., Costa, L., Jane, E., Latorre, J.I., Tarrach, R.: Generalized Schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 85, 1560 (2000). https://doi.org/10.1103/PhysRevLett.85.1560
Gao, X.H., Fei, S.M.: Estimation of concurrence for multipartite mixed states. Eur. Phys. J. Spec. Top. 159, 71 (2008). https://doi.org/10.1140/epjst/e2008-00694-x
Karmakar, S., Sen, A., Bhar, A., Sarkar, D.: Strong monogamy conjecture in a four-qubit system. Phys. Rev. A 93, 012327 (2016). https://doi.org/10.1103/PhysRevA.93.012327
Yuan, G.M., Song, W., Yang, M., Li, D.C., Zhao, J.L., Cao, Z.L.: Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement. Sci. Rep. 6, 28719 (2016). https://doi.org/10.1038/srep28719
Acknowledgements
This work is supported by the National Natural Science Foundation of China (NSFC) under Grants 12075159, 12171044 and 12301582; the specific research fund of the Innovation Platform for Academicians of Hainan Province; the Start-up Funding of Dongguan University of Technology No. 221110084.
Author information
Authors and Affiliations
Contributions
Writing-original draft, Zhong-Xi Shen, Kang-Kang Yang; Writing-review and editing, Zhi-Xiang Jin, Zhi-Xi Wang and Shao-Ming Fei. All authors have read and agreed to the published version of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Shen, ZX., Yang, KK., Jin, ZX. et al. Tighter monogamy relations of the \(S^{t}\) and \(T^{t}_q\)-entropy entanglement measures based on dual entropy. Quantum Inf Process 23, 274 (2024). https://doi.org/10.1007/s11128-024-04481-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04481-z