Abstract
As one of the most important branches of quantum information science, quantum communication is known for its unconditional security and efficiency. Nevertheless, the practical security of quantum key distribution protocols and quantum secure direct communication protocols is challenged due to the imperfections in experimental devices. Despite significant progress in theoretical and experimental research on the MDI-QSDC Protocol, challenges and unresolved issues remain. For example, further enhancing the scalability and system complexity of the protocol to meet the demands of large-scale quantum networks is necessary. In this paper, we propose a multi-party MDI-QSDC scheme based on multi-degree-of-freedom hyperentangled photons. Compared to the original MDI-QSDC protocol, our protocol allows multiple parties to participate in the information transmission process. For example, for four communicating parties, we can encode the information of three independent degrees of freedom so that each photon of each degree of freedom can transmit 2 bits of information. Moreover, all measurement tasks are performed by the fifth party, which can be untrusted or even completely controlled by eavesdroppers. The protocol is resistant to all possible attacks from imperfect measurement devices. It can eventually be extended to arbitrary degrees of freedom, allowing multiple parties to participate.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
All data generated or analyzed during this study are included in the article.
References
Bennett, C.H., & Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In Proceedings of the IEEE international conference on computers, systems, and signal processing 175. IEEE, New York (1984)
Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)
Cerf, N.J., Bourennane, M., Karlsson, A., et al.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88(12), 127902 (2002)
Stucki, D., Gisin, N., Guinnard, O., Ribordy, G., Zbinden, H.: Quantum key distribution over 67 km with a plug & play system. New J. Phys. 4(1), 41–41 (2002)
Hwang, W.Y.: Quantum key distribution with high loss: Toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)
Grosshans, F., Assche, G.V., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using Gaussian-modulated coherent states. Nature 421(6920), 238–241 (2003)
Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)
Qi, B., Lo, H.K., Ma, X., Zhao, Y.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 012326 (2005)
Schmitt-Manderbach, T., Weier, H., Fuerst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98(1), 010504 (2007)
Park, B.K., Lee, M.S., Woo, M.K., Kim, Y.S., Han, S.W., Moon, S.: QKD system with fast active optical path length compensation. Sci. China Phys. Mech. Astron. 60(6), 1–7 (2017)
Xu, F., Zhang, X.M.Q., Lo, H.K., & Pan, J.W.: Quantum cryptography with realistic devices. arXiv preprint arXiv:1903.09051 (2019)
Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1998)
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-podolsky-rosen pair block. Phys. Rev. A 68(4), 113–114 (2003)
Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 521–524 (2004)
Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)
Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., et al.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China (Phys., Mech. Astron.) 60(12), 120313 (2017)
Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China (Phys., Mech. Astron.) 61, 090312 (2018)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-podolsky-rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Beige, A., Englert, B.G., Kurtsiefer, C., & Weinfurter, H.: Secure communication with a publicly known key. (2001) https://doi.org/10.48550/arXiv.quant-ph/0111106
Beige, A., Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with single-photon two-qubit states. J. Phys. A Math. Gen. 35(28), L407–L413 (2002)
Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)
Yan, C., Shi-Bin, Z., Li-Li, Y., Gui-Hua, H.: Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit df state. Chin. Phys. B 24(5), 50307–050307 (2015)
Zhao, X.L., Li, J.L., Niu, P.H., Ma, H.Y., Ruan, D.: Two-step quantum secure direct communication scheme with frequency coding. Chin. Phys. B 03, 231–235 (2017)
Hassanpour, S., Houshmand, M.: Efficient controlled quantum secure direct communication based on ghz-like states. Quantum Inf. Process. 14(2), 739–753 (2015)
Zawadzki, P.: Eavesdropping on quantum secure direct communication in quantum channels with arbitrarily low loss rate. Quantum Inf. Process. 15, 1731–1741 (2016)
Tan, X., Zhang, X.: Controlled quantum secure direct communication by entanglement distillation or generalized measurement. Quantum Inf. Process. 15(5), 2137–2154 (2016)
Rios, F.F.S., Guerra, A.G.D.A.H., Ramos, R.V.: Quantum secure direct communication of digital and analog signals using continuum coherent states. Quantum Inf. Process. 15(11), 1–12 (2016)
Jian, Z.R., Jin, G.S., Wang, T.J.: Efficient quantum secure direct communication using the orbital angular momentum of single photons. Int. J. Theor. Phys. 55, 1811–1819 (2016)
Mi, S.C., Wang, T.J., Wang, C.: High-capacity quantum secure direct communication with orbital angular momentum of photons. IEEE Photonics J. 7(10), 7600108 (2015)
Li, X.H.: Quantum secure direct communication. Acta Physica Sinica 64, 160307 (2015)
Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., et al.: Experimental quantum secure direct communication with single photons. Light, Sci. Appl. 5(9), e16144 (2016)
Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)
Zhu, F., Zhang, W., Sheng, Y., Huang, Y.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62(22), 1519–1524 (2017)
Zhou, Z.R., Sheng, Y.B., Niu, P.H., et al.: Measurement-device-independent quantum secure direct communication. Sci. China Phys., Mech. Astron. 63(3), 230362 (2020)
Niu, P.H., Zhou, Z.R., Lin, Z.S., Sheng, Y.B., Yin, L.G., Long, G.L.: Measurement-device-independent quantum communication without encryption. Sci. bull. 63(20), 1472–1476 (2018)
Hong, Y.P., Zhou, L., Zhong, W., et al.: Measurement-device-independent three-party quantum secure direct communication. Quantum Inf. Process. 22, 111 (2023)
Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82(3), 032318 (2010)
Wang, X.L., Cai, X.D., Su, Z.E., et al.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518(7540), 516 (2015)
Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4(4), 282 (2008)
Hu, X.M., Guo, Y., Liu, B.H., et al.: Beating the channel capacity limit for superdense coding with entangled ququarts. Sci. Adv. (2018). https://doi.org/10.1126/sciadv.aat9304
Cui, Z.X., Zhong, W., Zhou, L., et al.: Measurement-device-independent quantum key distribution with hyperencoding. Sci. China Phys., Mech. Astron. 62(11), 110311 (2019)
Wu, F.Z., Yang, G.J., Wang, H.B., et al.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys., Mech. Astron. 60(12), 120313 (2017)
Chen, S.S., Zhou, L., Zhong, W., et al.: Three-step three-party quantum secure direct communication. Sci. China Phys., Mech. Astron. 61(9), 090312 (2018)
Li, L.Y., Wang, T.J., Wang, C.: The analysis of high-capacity quantum secure direct communication using polarization and orbital angular momentum of photons. Mod. Phys. Lett. B 34(2), 2050017 (2020)
Zou, Z.-K., Zhou, L., Zhong, W., Sheng, Y.-B.: Measurement-device–independent quantum secure direct communication of multiple degrees of freedom of a single photon. Europhys. Lett. 131, 40005 (2020)
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on EPR states. Phys. Rev. Lett. 69(24), 2881 (1992)
Nilesh, K., Joshi, P., & Panigrahi, P.K.: Automated error correction in superdense coding, with implementation on superconducting quantum computer. Quantum Physics, arXiv:2210.15161 (2022)
Wu, F., Yang, G., Wang, H., et al.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)
Gao, C.Y., Ren, B.C., Zhang, Y.X.: Universal linear-optical hyper-entangled Bell-state measurement. Appl. Phys. Exp. 13, 027004 (2020)
Vaidman, L.Y.N.: Methods for reliable teleportation. Phys. Rev. A Atomic, Mol.,Optical Phys. 59(1), 116 (1999)
Munro, W.J., Nemoto, K., Spiller, T.P., Barrett, S.D., Kok, P., Beausoleil, R.G.: Efficient optical quantum information processing. IOP Publ. (2005). https://doi.org/10.1088/1464-4266/7/7/002
Acknowledgements
This work is supported by the National Natural Science Foundation of China under Grant No. 62172268 and Shanghai Science and Technology Project under Grant No. 21JC1402800 and 20040501500.
Funding
National Natural Science Foundation of China, 62172268, Ri-Gui Zhou, Shanghai Science and Technology Project, 21JC1402800, Ri-Gui Zhou, 20040501500, Ri-Gui Zhou.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Guo, R., Zhou, RG. & Zhang, XX. Measurement-device-independent multi-party quantum secure direct communication. Quantum Inf Process 23, 304 (2024). https://doi.org/10.1007/s11128-024-04505-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04505-8