Skip to main content

Advertisement

Log in

Measurement-device-independent multi-party quantum secure direct communication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

As one of the most important branches of quantum information science, quantum communication is known for its unconditional security and efficiency. Nevertheless, the practical security of quantum key distribution protocols and quantum secure direct communication protocols is challenged due to the imperfections in experimental devices. Despite significant progress in theoretical and experimental research on the MDI-QSDC Protocol, challenges and unresolved issues remain. For example, further enhancing the scalability and system complexity of the protocol to meet the demands of large-scale quantum networks is necessary. In this paper, we propose a multi-party MDI-QSDC scheme based on multi-degree-of-freedom hyperentangled photons. Compared to the original MDI-QSDC protocol, our protocol allows multiple parties to participate in the information transmission process. For example, for four communicating parties, we can encode the information of three independent degrees of freedom so that each photon of each degree of freedom can transmit 2 bits of information. Moreover, all measurement tasks are performed by the fifth party, which can be untrusted or even completely controlled by eavesdroppers. The protocol is resistant to all possible attacks from imperfect measurement devices. It can eventually be extended to arbitrary degrees of freedom, allowing multiple parties to participate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data generated or analyzed during this study are included in the article.

References

  1. Bennett, C.H., & Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In Proceedings of the IEEE international conference on computers, systems, and signal processing 175. IEEE, New York (1984)

  2. Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    ADS  MathSciNet  Google Scholar 

  3. Cerf, N.J., Bourennane, M., Karlsson, A., et al.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88(12), 127902 (2002)

    ADS  Google Scholar 

  4. Stucki, D., Gisin, N., Guinnard, O., Ribordy, G., Zbinden, H.: Quantum key distribution over 67 km with a plug & play system. New J. Phys. 4(1), 41–41 (2002)

    ADS  Google Scholar 

  5. Hwang, W.Y.: Quantum key distribution with high loss: Toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)

    ADS  Google Scholar 

  6. Grosshans, F., Assche, G.V., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using Gaussian-modulated coherent states. Nature 421(6920), 238–241 (2003)

    ADS  Google Scholar 

  7. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    ADS  Google Scholar 

  8. Qi, B., Lo, H.K., Ma, X., Zhao, Y.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 012326 (2005)

    ADS  Google Scholar 

  9. Schmitt-Manderbach, T., Weier, H., Fuerst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98(1), 010504 (2007)

    ADS  Google Scholar 

  10. Park, B.K., Lee, M.S., Woo, M.K., Kim, Y.S., Han, S.W., Moon, S.: QKD system with fast active optical path length compensation. Sci. China Phys. Mech. Astron. 60(6), 1–7 (2017)

    Google Scholar 

  11. Xu, F., Zhang, X.M.Q., Lo, H.K., & Pan, J.W.: Quantum cryptography with realistic devices. arXiv preprint arXiv:1903.09051 (2019)

  12. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1998)

    ADS  MathSciNet  Google Scholar 

  13. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    ADS  Google Scholar 

  14. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-podolsky-rosen pair block. Phys. Rev. A 68(4), 113–114 (2003)

    Google Scholar 

  15. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 521–524 (2004)

    Google Scholar 

  16. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)

    ADS  Google Scholar 

  17. Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., et al.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China (Phys., Mech. Astron.) 60(12), 120313 (2017)

    ADS  Google Scholar 

  18. Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China (Phys., Mech. Astron.) 61, 090312 (2018)

    Google Scholar 

  19. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-podolsky-rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  Google Scholar 

  20. Beige, A., Englert, B.G., Kurtsiefer, C., & Weinfurter, H.: Secure communication with a publicly known key. (2001) https://doi.org/10.48550/arXiv.quant-ph/0111106

  21. Beige, A., Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with single-photon two-qubit states. J. Phys. A Math. Gen. 35(28), L407–L413 (2002)

    MathSciNet  Google Scholar 

  22. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    ADS  Google Scholar 

  23. Yan, C., Shi-Bin, Z., Li-Li, Y., Gui-Hua, H.: Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit df state. Chin. Phys. B 24(5), 50307–050307 (2015)

    Google Scholar 

  24. Zhao, X.L., Li, J.L., Niu, P.H., Ma, H.Y., Ruan, D.: Two-step quantum secure direct communication scheme with frequency coding. Chin. Phys. B 03, 231–235 (2017)

    Google Scholar 

  25. Hassanpour, S., Houshmand, M.: Efficient controlled quantum secure direct communication based on ghz-like states. Quantum Inf. Process. 14(2), 739–753 (2015)

    ADS  MathSciNet  Google Scholar 

  26. Zawadzki, P.: Eavesdropping on quantum secure direct communication in quantum channels with arbitrarily low loss rate. Quantum Inf. Process. 15, 1731–1741 (2016)

    ADS  MathSciNet  Google Scholar 

  27. Tan, X., Zhang, X.: Controlled quantum secure direct communication by entanglement distillation or generalized measurement. Quantum Inf. Process. 15(5), 2137–2154 (2016)

    ADS  MathSciNet  Google Scholar 

  28. Rios, F.F.S., Guerra, A.G.D.A.H., Ramos, R.V.: Quantum secure direct communication of digital and analog signals using continuum coherent states. Quantum Inf. Process. 15(11), 1–12 (2016)

    MathSciNet  Google Scholar 

  29. Jian, Z.R., Jin, G.S., Wang, T.J.: Efficient quantum secure direct communication using the orbital angular momentum of single photons. Int. J. Theor. Phys. 55, 1811–1819 (2016)

    Google Scholar 

  30. Mi, S.C., Wang, T.J., Wang, C.: High-capacity quantum secure direct communication with orbital angular momentum of photons. IEEE Photonics J. 7(10), 7600108 (2015)

    Google Scholar 

  31. Li, X.H.: Quantum secure direct communication. Acta Physica Sinica 64, 160307 (2015)

    Google Scholar 

  32. Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., et al.: Experimental quantum secure direct communication with single photons. Light, Sci. Appl. 5(9), e16144 (2016)

    Google Scholar 

  33. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    ADS  Google Scholar 

  34. Zhu, F., Zhang, W., Sheng, Y., Huang, Y.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62(22), 1519–1524 (2017)

    Google Scholar 

  35. Zhou, Z.R., Sheng, Y.B., Niu, P.H., et al.: Measurement-device-independent quantum secure direct communication. Sci. China Phys., Mech. Astron. 63(3), 230362 (2020)

    ADS  Google Scholar 

  36. Niu, P.H., Zhou, Z.R., Lin, Z.S., Sheng, Y.B., Yin, L.G., Long, G.L.: Measurement-device-independent quantum communication without encryption. Sci. bull. 63(20), 1472–1476 (2018)

    Google Scholar 

  37. Hong, Y.P., Zhou, L., Zhong, W., et al.: Measurement-device-independent three-party quantum secure direct communication. Quantum Inf. Process. 22, 111 (2023)

    ADS  MathSciNet  Google Scholar 

  38. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82(3), 032318 (2010)

    ADS  Google Scholar 

  39. Wang, X.L., Cai, X.D., Su, Z.E., et al.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518(7540), 516 (2015)

    ADS  Google Scholar 

  40. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4(4), 282 (2008)

    Google Scholar 

  41. Hu, X.M., Guo, Y., Liu, B.H., et al.: Beating the channel capacity limit for superdense coding with entangled ququarts. Sci. Adv. (2018). https://doi.org/10.1126/sciadv.aat9304

    Article  Google Scholar 

  42. Cui, Z.X., Zhong, W., Zhou, L., et al.: Measurement-device-independent quantum key distribution with hyperencoding. Sci. China Phys., Mech. Astron. 62(11), 110311 (2019)

    ADS  Google Scholar 

  43. Wu, F.Z., Yang, G.J., Wang, H.B., et al.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys., Mech. Astron. 60(12), 120313 (2017)

    ADS  Google Scholar 

  44. Chen, S.S., Zhou, L., Zhong, W., et al.: Three-step three-party quantum secure direct communication. Sci. China Phys., Mech. Astron. 61(9), 090312 (2018)

    Google Scholar 

  45. Li, L.Y., Wang, T.J., Wang, C.: The analysis of high-capacity quantum secure direct communication using polarization and orbital angular momentum of photons. Mod. Phys. Lett. B 34(2), 2050017 (2020)

    ADS  MathSciNet  Google Scholar 

  46. Zou, Z.-K., Zhou, L., Zhong, W., Sheng, Y.-B.: Measurement-device–independent quantum secure direct communication of multiple degrees of freedom of a single photon. Europhys. Lett. 131, 40005 (2020)

    ADS  Google Scholar 

  47. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on EPR states. Phys. Rev. Lett. 69(24), 2881 (1992)

    ADS  MathSciNet  Google Scholar 

  48. Nilesh, K., Joshi, P., & Panigrahi, P.K.: Automated error correction in superdense coding, with implementation on superconducting quantum computer. Quantum Physics, arXiv:2210.15161 (2022)

  49. Wu, F., Yang, G., Wang, H., et al.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)

    ADS  Google Scholar 

  50. Gao, C.Y., Ren, B.C., Zhang, Y.X.: Universal linear-optical hyper-entangled Bell-state measurement. Appl. Phys. Exp. 13, 027004 (2020)

    ADS  Google Scholar 

  51. Vaidman, L.Y.N.: Methods for reliable teleportation. Phys. Rev. A Atomic, Mol.,Optical Phys. 59(1), 116 (1999)

    Google Scholar 

  52. Munro, W.J., Nemoto, K., Spiller, T.P., Barrett, S.D., Kok, P., Beausoleil, R.G.: Efficient optical quantum information processing. IOP Publ. (2005). https://doi.org/10.1088/1464-4266/7/7/002

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 62172268 and Shanghai Science and Technology Project under Grant No. 21JC1402800 and 20040501500.

Funding

National Natural Science Foundation of China, 62172268, Ri-Gui Zhou, Shanghai Science and Technology Project, 21JC1402800, Ri-Gui Zhou, 20040501500, Ri-Gui Zhou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ri-Gui Zhou.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Zhou, RG. & Zhang, XX. Measurement-device-independent multi-party quantum secure direct communication. Quantum Inf Process 23, 304 (2024). https://doi.org/10.1007/s11128-024-04505-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04505-8

Keywords

Navigation