Abstract
The optimization of the power consumption of antenna networks is a problem with a potential impact in the field of telecommunications. In this work, we investigate the application of the quantum approximate optimization algorithm (QAOA) and the quantum adiabatic algorithm (QAA), to the solution of a prototypical model in this field. We use state vector emulation in a high-performance computing environment to compare the performance of these two algorithms in terms of solution quality, using selected evaluation metrics. We estimate the circuit depth scaling with the problem size while maintaining a certain level of solution quality, and we extend our analysis up to 31 qubits, which is rarely addressed in the literature. Our calculations show that as the problem size increases, the probability of measuring the exact solution decreases exponentially for both algorithms. This issue is particularly severe when we include constraints in the problem, resulting in full connectivity between the sites. Nonetheless, we observe that the cumulative probability of measuring solutions close to the optimal one remains high also for the largest instances considered in this work. Our findings keep the way open to the application of these algorithms, or variants thereof, to generate suboptimal solutions at scales relevant to industrial use cases.












Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Kochenberger, G., Hao, J.-K., Glover, F., Lewis, M., Lü, Z., Wang, H., Wang, Y.: The unconstrained binary quadratic programming problem: a survey. J. Comb. Optim. 28(1), 58–81 (2014). https://doi.org/10.1007/s10878-014-9734-0
Lucas, A.: Ising formulations of many NP problems. Front. Phys. (2014). https://doi.org/10.3389/fphy.2014.00005
Lodewijks, B.: Mapping np-hard and np-complete optimisation problems to quadratic unconstrained binary optimisation problems (2020) arXiv:1911.08043 [cs.DS]
Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys. A Math. Gen. 15(10), 3241 (1982). https://doi.org/10.1088/0305-4470/15/10/028
Farhi, E., Harrow, A.W.: Quantum supremacy through the quantum approximate optimization algorithm (2019) arXiv:1602.07674 [quant-ph]
Guerreschi, G.G., Matsuura, A.Y.: Qaoa for max-cut requires hundreds of qubits for quantum speed-up. Sci. Rep. 9(1), 6903 (2019). https://doi.org/10.1038/s41598-019-43176-9
MacQuarrie, E.R., Simon, C., Simmons, S., Maine, E.: The emerging commercial landscape of quantum computing. Nat. Rev. Phys. 2(11), 596–598 (2020). https://doi.org/10.1038/s42254-020-00247-5
Wurtz, J., Love, P.: Maxcut quantum approximate optimization algorithm performance guarantees for \(p > 1\). Phys. Rev. A 103, 042612 (2021). https://doi.org/10.1103/PhysRevA.103.042612
Farhi, E., Goldstone, J., Gutmann, S., Zhou, L.: The Quantum approximate optimization algorithm and the Sherrington–Kirkpatrick model at infinite size. Quantum 6, 759 (2022) https://doi.org/10.22331/q-2022-07-07-759
Zhou, L., Wang, S.-T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. Phys. Rev. X 10, 021067 (2020). https://doi.org/10.1103/PhysRevX.10.021067
Koßmann, G., Binkowski, L., Luijk, L., Ziegler, T., Schwonnek, R.: Deep-circuit QAOA (2023) arXiv:2210.12406 [quant-ph]
Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355–5363 (1998). https://doi.org/10.1103/PhysRevE.58.5355
Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A.J., Johansson, J., Bunyk, P., Chapple, E.M., Enderud, C., Hilton, J.P., Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich, C., Thom, M.C., Tolkacheva, E., Truncik, C.J.S., Uchaikin, S., Wang, J., Wilson, B., Rose, G.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011). https://doi.org/10.1038/nature10012
Boixo, S., Rønnow, T.F., Isakov, S.V., Wang, Z., Wecker, D., Lidar, D.A., Martinis, J.M., Troyer, M.: Evidence for quantum annealing with more than one hundred qubits. Nat. Phys. 10(3), 218–224 (2014). https://doi.org/10.1038/nphys2900
Smelyanskiy, V.N., Rieffel, E.G., Knysh, S.I., Williams, C.P., Johnson, M.W., Thom, M.C., Macready, W.G., Pudenz, K.L.: A Near-term quantum computing approach for hard computational problems in space exploration (2012) arXiv:1204.2821 [quant-ph]
Rieffel, E.G., Venturelli, D., O’Gorman, B., Do, M.B., Prystay, E.M., Smelyanskiy, V.N.: A case study in programming a quantum Annealer for hard operational planning problems. Quantum Inf. Process. 14(1), 1–36 (2015). https://doi.org/10.1007/s11128-014-0892-x
Venturelli, D., Marchand, D.J.J., Rojo, G.: Quantum annealing implementation of job-shop scheduling (2016) arXiv:1506.08479 [quant-ph]
Clark, J., West, T., Zammit, J., Guo, X., Mason, L., Russell, D.: Towards real time multi-robot routing using quantum computing technologies. In: Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region. HPC Asia 2019, pp. 111–119. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3293320.3293333
Stollenwerk, T., O’Gorman, B., Venturelli, D., Mandra, S., Rodionova, O., Ng, H., Sridhar, B., Rieffel, E.G., Biswas, R.: Quantum annealing applied to de-conflicting optimal trajectories for air traffic management. IEEE Trans. Intell. Transp. Syst. 21(1), 285–297 (2020). https://doi.org/10.1109/tits.2019.2891235
Yarkoni, S., Raponi, E., BÃck, T., Schmitt, S.: Quantum annealing for industry applications: introduction and review. Reports on Progress in Physics 85(10), 104001 (2022) https://doi.org/10.1088/1361-6633/ac8c54
Domino, K., Kundu, A., Salehi, K.K.: Quadratic and higher-order unconstrained binary optimization of railway rescheduling for quantum computing. Quantum Inform. Process. (2022). https://doi.org/10.1007/s11128-022-03670-y
Guillaume, A., Goh, E.Y., Johnston, M.D., Wilson, B.D., Ramanan, A., Tibble, F., Lackey, B.: Deep space network scheduling using quantum annealing. IEEE Trans. Quantum Eng. 3, 1–13 (2022). https://doi.org/10.1109/TQE.2022.3199267
Wilson, B., Goh, E., Guillaume, A., Alimo, R., Claudet, T., Venkataram, H.: Automating antenna scheduling problems using quantum computing and deep reinforcement learning. In: IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, pp. 4915–4918 (2022). https://doi.org/10.1109/IGARSS46834.2022.9884342
Colucci, G., Linde, S., Phillipson, F.: Power network optimization: A quantum approach. IEEE Access, pp. 1–1 (2023) https://doi.org/10.1109/ACCESS.2023.3312997
Jing, H., Wang, Y., Li, Y.: Data-driven quantum approximate optimization algorithm for power systems. Commun. Eng. 2(1), 12 (2023). https://doi.org/10.1038/s44172-023-00061-8
Stollenwerk, T., Hadfield, S., Wang, Z.: Toward quantum gate-model heuristics for real-world planning problems. IEEE Trans. Quantum Eng. 1, 1–16 (2020)
Leonidas, I.D., Dukakis, A., Tan, B., Angelakis, D.G.: Qubit efficient quantum algorithms for the vehicle routing problem on quantum computers of the NISQ era (2023) arXiv:2306.08507 [quant-ph]
Quetschlich, N., Koch, V., Burgholzer, L., Wille, R.: A hybrid classical quantum computing approach to the satellite mission planning problem (2023) arXiv:2308.00029 [quant-ph]
Rainjonneau, S., Tokarev, I., Iudin, S., Rayaprolu, S., Pinto, K., Lemtiuzhnikova, D., Koblan, M., Barashov, E., Kordzanganeh, M., Pflitsch, M., Melnikov, A.: Quantum algorithms applied to satellite mission planning for earth observation. IEEE J. Selected Topics Appl. Earth Observ. Remote Sensing 16, 7062–7075 (2023). https://doi.org/10.1109/jstars.2023.3287154
Carreras-Coch, A., Navarro, J., Sans, C., Zaballos, A.: Communication technologies in emergency situations. Electronics (2022). https://doi.org/10.3390/electronics11071155
Mozaffari, M., Saad, W., Bennis, M., Debbah, M.: Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Commun. Lett. 20(8), 1647–1650 (2016). https://doi.org/10.1109/LCOMM.2016.2578312
Sun, J., Wang, W., Li, S., Da, Q., Chen, L.: Scheduling optimization for UAV communication coverage using virtual force-based PSO model. Digit. Commun. Netw. (2023). https://doi.org/10.1016/j.dcan.2023.01.007
Barahona, F., Grötschel, M., Jünger, M., Reinelt, G.: An application of combinatorial optimization to statistical physics and circuit layout design. Oper. Res. 36(3), 493–513 (1988). https://doi.org/10.1287/opre.36.3.493
Yoshioka, T., Sasada, K., Nakano, Y., Fujii, K.: Fermionic quantum approximate optimization algorithm. Phys. Rev. Res. 5, 023071 (2023). https://doi.org/10.1103/PhysRevResearch.5.023071
Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm (2014) arXiv:1411.4028 [quant-ph]
Yuan, X., Endo, S., Zhao, Q., Li, Y., Benjamin, S.C.: Theory of variational quantum simulation. Quantum 3, 191 (2019). https://doi.org/10.22331/q-2019-10-07-191
Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S.C., Endo, S., Fujii, K., McClean, J.R., Mitarai, K., Yuan, X., Cincio, L., Coles, P.J.: Variational quantum algorithms. Nat. Rev. Phys. 3(9), 625–644 (2021). https://doi.org/10.1038/s42254-021-00348-9
Larkin, J., Jonsson, M., Justice, D., Guerreschi, G.G.: Evaluation of QAOA based on the approximation ratio of individual samples. Quantum Sci. Technol. 7(4), 045014 (2022). https://doi.org/10.1088/2058-9565/ac6973
Chai, Y., Han, Y.-J., Wu, Y.-C., Li, Y., Dou, M., Guo, G.-P.: Shortcuts to the quantum approximate optimization algorithm. Phys. Rev. A 105, 042415 (2022). https://doi.org/10.1103/PhysRevA.105.042415
Morales, M.E.S., Biamonte, J.D., Zimborás, Z.: On the universality of the quantum approximate optimization algorithm. Quantum Inform. Process. (2020). https://doi.org/10.1007/s11128-020-02748-9
Akshay, V., Philathong, H., Morales, M.E.S., Biamonte, J.D.: Reachability deficits in quantum approximate optimization. Phys. Rev. Lett. 124, 090504 (2020). https://doi.org/10.1103/PhysRevLett.124.090504
Farhi, E., Gamarnik, D., Gutmann, S.: The quantum approximate optimization algorithm needs to see the whole graph: a typical case (2020) arXiv:2004.09002 [quant-ph]
Binkowski, L., Koßmann, G., Ziegler, T., Schwonnek, R.: Elementary proof of QAOA convergence (2023) arXiv:2302.04968 [quant-ph]
Chandarana, P., Hegade, N.N., Paul, K., Albarrán-Arriagada, F., Solano, E., Campo, A., Chen, X.: Digitized-counterdiabatic quantum approximate optimization algorithm. Phys. Rev. Res. 4, 013141 (2022). https://doi.org/10.1103/PhysRevResearch.4.013141
Leontica, S., Amaro, D.: Exploring the neighborhood of 1-layer QAOA with instantaneous quantum polynomial circuits (2023) arXiv:2210.05526 [quant-ph]
Blekos, K., Brand, D., Ceschini, A., Chou, C.-H., Li, R.-H., Pandya, K., Summer, A.: A review on quantum approximate optimization algorithm and its variants (2023) arXiv:2306.09198 [quant-ph]
Egger, D.J., Mareček, J., Woerner, S.: Warm-starting quantum optimization. Quantum 5, 479 (2021). https://doi.org/10.22331/q-2021-06-17-479
Tate, R., Moondra, J., Gard, B., Mohler, G., Gupta, S.: Warm-started QAOA with custom mixers provably converges and computationally beats Goemans-Williamson’s max-cut at low circuit depths (2023) arXiv:2112.11354 [quant-ph]
Crosson, E., Farhi, E., Lin, C.Y.-Y., Lin, H.-H., Shor, P.: Different strategies for optimization using the quantum adiabatic algorithm (2014) arXiv:1401.7320 [quant-ph]
Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution (2000) arXiv:quant-ph/0001106 [quant-ph]
Hogg, T.: Adiabatic quantum computing for random satisfiability problems. Phys. Rev. A 67, 022314 (2003). https://doi.org/10.1103/PhysRevA.67.022314
Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an np-complete problem. Science 292(5516), 472–475 (2001). https://doi.org/10.1126/science.1057726
Albash, T., Lidar, D.A.: Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018). https://doi.org/10.1103/RevModPhys.90.015002
Kremenetski, V., Hogg, T., Hadfield, S., Cotton, S.J., Tubman, N.M.: Quantum alternating operator ansatz (QAOA) phase diagrams and applications for quantum chemistry (2021) arXiv:2108.13056 [quant-ph]
Bittel, L., Kliesch, M.: Training variational quantum algorithms is NP-hard. Phys. Rev. Lett. 127, 120502 (2021). https://doi.org/10.1103/PhysRevLett.127.120502
Sack, S.H., Medina, R.A., Kueng, R., Serbyn, M.: Recursive greedy initialization of the quantum approximate optimization algorithm with guaranteed improvement. Phys. Rev. A 107, 062404 (2023). https://doi.org/10.1103/PhysRevA.107.062404
Tibaldi, S., Vodola, D., Tignone, E., Ercolessi, E.: Bayesian optimization for QAOA (2023) arXiv:2209.03824 [quant-ph]
Carrascal, G., Roman, B., Botella, G., Barrio, A.: Differential evolution VQE for crypto-currency arbitrage. quantum optimization with many local minima (2023) arXiv:2308.01427 [quant-ph]
Brandao, F.G.S.L., Broughton, M., Farhi, E., Gutmann, S., Neven, H.: For fixed control parameters the quantum approximate optimization algorithm’s objective function value concentrates for typical instances (2018) https://doi.org/10.48550/ARXIV.1812.04170
Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79
Qiskit contributors: Qiskit: An open-source framework for quantum computing (2023) https://doi.org/10.5281/zenodo.2573505
Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) https://doi.org/10.1038/s41592-019-0686-2
Scriva, G., Astrakhantsev, N., Pilati, S., Mazzola, G.: Challenges of variational quantum optimization with measurement shot noise (2023) arXiv:2308.00044 [quant-ph]
Gonthier, J.F., Radin, M.D., Buda, C., Doskocil, E.J., Abuan, C.M., Romero, J.: Measurements as a roadblock to near-term practical quantum advantage in chemistry: resource analysis. Phys. Rev. Res. 4, 033154 (2022). https://doi.org/10.1103/PhysRevResearch.4.033154
Kim, Y., Eddins, A., Anand, S., Wei, K.X., Berg, E., Rosenblatt, S., Nayfeh, H., Wu, Y., Zaletel, M., Temme, K., Kandala, A.: Evidence for the utility of quantum computing before fault tolerance. Nature 618(7965), 500–505 (2023). https://doi.org/10.1038/s41586-023-06096-3
Author information
Authors and Affiliations
Contributions
M.V. and D.D. developed the code for the quantum simulation and performed the calculations. All authors contributed equally to the conception of this work, to the data analysis, and to the writing of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing commercial or financial interest that could be construed as a potential conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Vandelli, M., Lignarolo, A., Cavazzoni, C. et al. Evaluating the practicality of quantum optimization algorithms for prototypical industrial applications. Quantum Inf Process 23, 344 (2024). https://doi.org/10.1007/s11128-024-04560-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04560-1