Abstract
Global quantum discord (GQD) refers to the number of quantum correlations present in the entire quantum many-body system, rather than just between two subsystems. Here, we utilize GQD to characterize quantum phase transitions in an Ising chain subjected to both transverse and longitudinal magnetic fields. We investigate the effects of the transverse magnetic field \(h_{x}\), longitudinal magnetic field \(h_{z}\), and temperature T on the properties of GQD while keeping the coupling strength J between spins constant. We show that we can perfectly illustrate the critical points of the model by analyzing the singularity of GQD. We find that the GQD exhibits an increase as the system size N increases, regardless of whether the temperature is zero or finite. We present the phase diagram of a mixed Ising model under the combined influence of \(h_{x}\) and \(h_{z}\). Moreover, we show that we can use the features of GQD at lower temperatures to identify QPTs in quantum many-body systems and determine their critical points, as achieving absolute zero temperatures is practically impossible. Additionally, we show that GQD both at zero and finite temperatures show a linear behavior of the system size N, i.e., \(\mathcal {G}=kN+b\), in which k and b are the fitting parameters.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
All data that support the findings of this study are included within the article.
References
Sachdev, S.: Quantum Phase Transitions Publisher Cambridge University Press, Cambridge, UK (1999)
Laflorencie, N.: Quantum entanglement in condensed matter systems. Phys. Rep. 646, 1 (2016). https://doi.org/10.1016/j.physrep.2016.06.008
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009). https://doi.org/10.1103/RevModPhys.81.865
Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008). https://doi.org/10.1103/RevModPhys.80.517
Wu, H.-B., Liu, J.-J.: Anderson disorder-induced nontrivial topological phase transitions in two-dimensional topological superconductors. Phys. Rev. B 103, 11543115430 (2021). https://doi.org/10.1103/PhysRevB.103.115430
Ioffe, L.B., Mézard, M.: Disorder-driven quantum phase transitions in superconductors and magnets. Phys. Rev. Lett. 105, 037001 (2010). https://doi.org/10.1103/PhysRevLett.105.037001
Choi, S., Bao, Y., Qi, X.-L., Altman, E.: Quantum error correction in scrambling dynamics and measurement-induced phase transition. Phys. Rev. Lett. 125, 030505 (2020). https://doi.org/10.1103/PhysRevLett.125.030505
Cui, J., Gu, M., Kwek, L.C., Santos, M.F., Fan, H., Vedral, V.: Quantum phases with differing computational power. Nat. Commun. 3, 812 (2012). https://doi.org/10.1038/ncomms1809
Chiu, C.-K., Teo, J.C.Y., Schnyder, A.P., Ryu, S.: Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016). https://doi.org/10.1103/RevModPhys.88.035005
Banchi, L., Fernández-Rossier, J., Hirjibehedin, C.F., Bose, S.: Gating classical information flow via equilibrium quantum phase transitions. Phys. Rev. Lett. 118, 147203 (2017). https://doi.org/10.1103/PhysRevLett.118.147203
Osterloh, A., Amico, L., Falci, G.: Fazio, Scaling of entanglement close to a quantum phase transition. Nature 416, 608 (2002). https://doi.org/10.1038/416608a
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998). https://doi.org/10.1103/PhysRevLett.80.2245
Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed bipartite quantum states in arbitrary dimensions. Phys. Rev. Lett. 92, 167902 (2004). https://doi.org/10.1103/PhysRevLett.92.167902
Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed multipartite quantum states. Phys. Rev. Lett. 95, 260502 (2005). https://doi.org/10.1103/PhysRevLett.95.260502
Chen, K., Albeverio, S., Fei, S.-M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95, 040504 (2005). https://doi.org/10.1103/PhysRevLett.95.040504
Yao, H., Qi, X.-L.: Entanglement entropy and entanglement spectrum of the kitaev model. Phys. Rev. Lett. 105, 080501 (2010). https://doi.org/10.1103/PhysRevLett.105.080501
Islam, R., Ma, R., Preiss, P.M., Eric Tai, M., Lukin, A., Rispoli, M., Greiner, M.: Measuring entanglement entropy in a quantum many-body system. Nature 528, 77 (2015). https://doi.org/10.1038/nature15750
Eisert, J., Cramer, M., Plenio, M.B.: Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277 (2010). https://doi.org/10.1103/RevModPhys.82.277
Calabrese, P., Cardy, J.: Evolution of entanglement entropy in one-dimensional systems. J. Stat. Mech. Theory Exp. 2005, P04010 (2005). https://doi.org/10.1088/1742-5468/2005/04/P04010
Romero, G., López, C.E., Lastra, F., Solano, E., Retamal, J.C.: Direct measurement of concurrence for atomic two-qubit pure states. Phys. Rev. A 75, 032303 (2007). https://doi.org/10.1103/PhysRevA.75.032303
Brydges, T., Elben, A., Jurcevic, P., Vermersch, B., Maier, C., Lanyon, B.P., Zoller, P., Blatt, R., Roos, C.F.: Probing Renyi entanglement entropy via randomized measurements. Science 364, 260 (2019). https://doi.org/10.1126/science.aau4963
Abanin, D.A., Demler, E.: Measuring entanglement entropy of a generic many-body system with a quantum switch. Phys. Rev. Lett. 109, 020504 (2012). https://doi.org/10.1103/PhysRevLett.109.020504
Daley, A.J., Pichler, H., Schachenmayer, J., Zoller, P.: Measuring entanglement growth in quench dynamics of bosons in an optical lattice. Phys. Rev. Lett. 109, 020505 (2012). https://doi.org/10.1103/PhysRevLett.109.020505
Li, Y., Zou, Y., Glorioso, P., Altman, E., Fisher, M.P.A.: Cross entropy benchmark for measurement-induced phase transitions. Phys. Rev. Lett. 130, 220404 (2023). https://doi.org/10.1103/PhysRevLett.130.220404
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001). https://doi.org/10.1103/PhysRevLett.88.017901
Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008). https://doi.org/10.1103/PhysRevA.77.042303
Dillenschneider, R.: Quantum discord and quantum phase transition in spin chains. Phys. Rev. B 78, 224413 (2008). https://doi.org/10.1103/PhysRevB.78.224413
Chernyavskiy, A.Y., Doronin, S.I., Fel’dman, E.B.: Bipartite quantum discord in a multiqubit spin chain. Phys. Scr. 2014, 014007 (2014). https://doi.org/10.1088/0031-8949/2014/T160/014007
Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012). https://doi.org/10.1103/RevModPhys.84.1655
Lanyon, B.P., Jurcevic, P., Hempel, C., Gessner, M., Vedral, V., Blatt, R., Roos, C.F.: Experimental generation of quantum discord via noisy processes. Phys. Rev. Lett. 111, 100504 (2013). https://doi.org/10.1103/PhysRevLett.111.100504
Chen, Y.-X., Li, S.-W.: Quantum correlations in topological quantum phase transitions. Phys. Rev. A 81, 032120 (2010). https://doi.org/10.1103/PhysRevA.81.032120
Song, J.-L., Gu, S.-J., Lin, H.-Q.: Quantum entanglement in the \({S=1/2}\) spin ladder with ring exchange. Phys. Rev. B 74, 155119 (2006). https://doi.org/10.1103/PhysRevB.74.155119
Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010). https://doi.org/10.1103/PhysRevLett.105.095702
Maziero, J., Céleri, L.C., Serra, R.M., Sarandy, M.S.: Long-range quantum discord in critical spin systems. Phys. Lett. A 376, 1540 (2012). https://doi.org/10.1016/j.physleta.2012.03.029
Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011). https://doi.org/10.1103/PhysRevA.84.042109
Campbell, S., Mazzola, L., De Chiara, G., Apollaro, T.J.G., Plastina, F., Busch, T., Paternostro, M.: Global quantum correlations in finite-size spin chains. New J. Phys. 15, 043033 (2013). https://doi.org/10.1088/1367-2630/15/4/043033
Sun, Z.-Y., Liao, Y.-E., Guo, B., Huang, H.-L.: Global quantum discord in matrix product states and the application. Ann. Phys. 359, 115 (2015). https://doi.org/10.1016/j.aop.2015.04.015
Shen, L.-H., Guo, B., Sun, Z.-Y., Wang, M., Wu, Y.-Y.: Global quantum discord and thermal tensor network in XXZ chains at finite temperatures. Phys. B: Condens. Matter. 565, 1 (2019). https://doi.org/10.1016/j.physb.2019.04.021
Bao, J., Guo, B., Liu, Y.-H., Shen, L.-H., Sun, Z.-Y.: Multipartite nonlocality and global quantum discord in the antiferromagnetic Lipkin–Meshkov–Glick model. Phys. B: Condens. Matter. 593, 412297 (2020). https://doi.org/10.1016/j.physb.2020.412297
Bao, J., Liu, Y.-H., Guo, B.: Global quantum discord in the Lipkin-Meshkov-Glick model at zero and finite temperatures. J. Phys: Condens. Matter. 33, 495401 (2021). https://doi.org/10.1088/1361-648x/ac2647
Cruz, C., Anka, M.F., Rastegar-Sedehi, H.-R., Castro, C.: Geometric quantum discord and coherence in a dipolar interacting magnetic system. Phys. Scr. 98, 075105 (2023). https://doi.org/10.1088/1402-4896/acde1d
Hajihoseinlou, H., Ahansaz, B., Eghbalifam, F., Behboudnia, M.: Classical-driving-assisted quantum correlation. Quantum Inf. Process. 22, 136 (2023). https://doi.org/10.1007/s11128-023-03885-7
Sen, P.: Quantum phase transitions in the Ising model in a spatially modulated field. Phys. Rev. E 63, 016112 (2000). https://doi.org/10.1103/PhysRevE.63.016112
Ovchinnikov, A.A., Dmitriev, D.V., Krivnov, V.Y., Cheranovskii, V.O.: Antiferromagnetic Ising chain in a mixed transverse and longitudinal magnetic field. Phys. Rev. B 68, 214406 (2003). https://doi.org/10.1103/PhysRevB.68.214406
Lin, Y.-P., Kao, Y.-J., Chen, P., Lin, Y.-C.: Griffiths singularities in the random quantum Ising antiferromagnet: a tree tensor network renormalization group study. Phys. Rev. B 96, 06442064427 (2017). https://doi.org/10.1103/PhysRevB.96.064427
Bonfim, O.F.D.A., Boechat, B., Florencio, J.: Ground-state properties of the one-dimensional transverse Ising model in a longitudinal magnetic field. Phys. Rev. E 99, 012122 (2019). https://doi.org/10.1103/PhysRevE.99.012122
Lajkó, P., Iglói, F.: Mixed-order transition in the antiferromagnetic quantum Ising chain in a field. Phys. Rev. B 103, 174404 (2021). https://doi.org/10.1103/PhysRevB.103.174404
Liu, Y., Li, M., Bao, J., Guo, B., Sun, Z.: Multipartite nonlocality in an Ising model with a tilted magnetic field at zero and finite temperatures. Phys. Lett. A 450, 128396 (2022). https://doi.org/10.1016/j.physleta.2022.128396
Peng, C., Cui, X.: Bridging quantum many-body scars and quantum integrability in Ising chains with transverse and longitudinal fields. Phys. Rev. B 106, 214311 (2022). https://doi.org/10.1103/PhysRevB.106.214311
Simon, J., Bakr, W.S., Ma, R., Tai, M.E., Preiss, P.M., Greiner, M.: Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307 (2011). https://doi.org/10.1038/nature09994
Sachdev, S., Sengupta, K., Girvin, S.M.: Mott insulators in strong electric fields. Phys. Rev. B 66, 075128 (2002). https://doi.org/10.1103/PhysRevB.66.075128
Bauer, B., Carr, L.D., Evertz, H.G., Feiguin, A., Freire, J., Fuchs, S., Gamper, L., Gukelberger, J., Gull, E., Guertler, S., Hehn, A., Igarashi, R., Isakov, S.V., Koop, D., Ma, P.N., Mates, P., Matsuo, H., Parcollet, O., Pawłowski, G., Picon, J.D., Pollet, L., Santos, E., Scarola, V.W., Schollwöck, U. Silva, C., Surer, B., Todo, S., Trebst, S., Troyer, M., Wall, M.L., Werner, P., Wessel, S.: The ALPS project release 2.0: open source software for strongly correlated systems, Stat. Mech. Theory Exp. 2011, P05001 ( 2011) https://doi.org/10.1088/1742-5468/2011/05/p05001
Fishman, M., White, S.R., Stoudenmire, E.M.: The ITensor software library for tensor network calculations, arXiv:2007.14822( 2020)
Liu, B.-Q., Shao, B., Zou, J.: Quantum discord for a central two-qubit system coupled to an \(\mathit{XY}\)-spin-chain environment. Phys. Rev. A 82, 062119 (2010). https://doi.org/10.1103/PhysRevA.82.062119
Montenegro, V., Mishra, U., Bayat, A.: Global sensing and its impact for quantum many-body probes with criticality. Phys. Rev. Lett. 126, 200501 (2021). https://doi.org/10.1103/PhysRevLett.126.200501
Campostrini, M., Nespolo, J., Pelissetto, A., Vicari, E.: Finite-size scaling at first-order quantum transitions. Phys. Rev. Lett. 113, 070402 (2014). https://doi.org/10.1103/PhysRevLett.113.070402
Acknowledgements
This work is supported by the National Natural Science Foundation of China (11975175).
Author information
Authors and Affiliations
Contributions
Guo proposed the idea. Xiao and Shen carried out the calculations. Xiao, Zhang, Shen, Bao and Guo wrote the paper. All authors discussed the results and commented on the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Xiao, W., Zhang, W., Shen, L. et al. Global quantum discord in an Ising model with transverse and longitudinal magnetic fields. Quantum Inf Process 23, 347 (2024). https://doi.org/10.1007/s11128-024-04567-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04567-8