Skip to main content

Advertisement

Log in

Global quantum discord in an Ising model with transverse and longitudinal magnetic fields

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Global quantum discord (GQD) refers to the number of quantum correlations present in the entire quantum many-body system, rather than just between two subsystems. Here, we utilize GQD to characterize quantum phase transitions in an Ising chain subjected to both transverse and longitudinal magnetic fields. We investigate the effects of the transverse magnetic field \(h_{x}\), longitudinal magnetic field \(h_{z}\), and temperature T on the properties of GQD while keeping the coupling strength J between spins constant. We show that we can perfectly illustrate the critical points of the model by analyzing the singularity of GQD. We find that the GQD exhibits an increase as the system size N increases, regardless of whether the temperature is zero or finite. We present the phase diagram of a mixed Ising model under the combined influence of \(h_{x}\) and \(h_{z}\). Moreover, we show that we can use the features of GQD at lower temperatures to identify QPTs in quantum many-body systems and determine their critical points, as achieving absolute zero temperatures is practically impossible. Additionally, we show that GQD both at zero and finite temperatures show a linear behavior of the system size N, i.e., \(\mathcal {G}=kN+b\), in which k and b are the fitting parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data that support the findings of this study are included within the article.

References

  1. Sachdev, S.: Quantum Phase Transitions Publisher Cambridge University Press, Cambridge, UK (1999)

  2. Laflorencie, N.: Quantum entanglement in condensed matter systems. Phys. Rep. 646, 1 (2016). https://doi.org/10.1016/j.physrep.2016.06.008

    Article  ADS  MathSciNet  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009). https://doi.org/10.1103/RevModPhys.81.865

    Article  ADS  MathSciNet  Google Scholar 

  4. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008). https://doi.org/10.1103/RevModPhys.80.517

    Article  ADS  MathSciNet  Google Scholar 

  5. Wu, H.-B., Liu, J.-J.: Anderson disorder-induced nontrivial topological phase transitions in two-dimensional topological superconductors. Phys. Rev. B 103, 11543115430 (2021). https://doi.org/10.1103/PhysRevB.103.115430

    Article  Google Scholar 

  6. Ioffe, L.B., Mézard, M.: Disorder-driven quantum phase transitions in superconductors and magnets. Phys. Rev. Lett. 105, 037001 (2010). https://doi.org/10.1103/PhysRevLett.105.037001

    Article  ADS  Google Scholar 

  7. Choi, S., Bao, Y., Qi, X.-L., Altman, E.: Quantum error correction in scrambling dynamics and measurement-induced phase transition. Phys. Rev. Lett. 125, 030505 (2020). https://doi.org/10.1103/PhysRevLett.125.030505

    Article  ADS  MathSciNet  Google Scholar 

  8. Cui, J., Gu, M., Kwek, L.C., Santos, M.F., Fan, H., Vedral, V.: Quantum phases with differing computational power. Nat. Commun. 3, 812 (2012). https://doi.org/10.1038/ncomms1809

    Article  ADS  Google Scholar 

  9. Chiu, C.-K., Teo, J.C.Y., Schnyder, A.P., Ryu, S.: Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016). https://doi.org/10.1103/RevModPhys.88.035005

    Article  ADS  Google Scholar 

  10. Banchi, L., Fernández-Rossier, J., Hirjibehedin, C.F., Bose, S.: Gating classical information flow via equilibrium quantum phase transitions. Phys. Rev. Lett. 118, 147203 (2017). https://doi.org/10.1103/PhysRevLett.118.147203

    Article  ADS  Google Scholar 

  11. Osterloh, A., Amico, L., Falci, G.: Fazio, Scaling of entanglement close to a quantum phase transition. Nature 416, 608 (2002). https://doi.org/10.1038/416608a

    Article  ADS  Google Scholar 

  12. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998). https://doi.org/10.1103/PhysRevLett.80.2245

    Article  ADS  Google Scholar 

  13. Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed bipartite quantum states in arbitrary dimensions. Phys. Rev. Lett. 92, 167902 (2004). https://doi.org/10.1103/PhysRevLett.92.167902

    Article  ADS  Google Scholar 

  14. Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed multipartite quantum states. Phys. Rev. Lett. 95, 260502 (2005). https://doi.org/10.1103/PhysRevLett.95.260502

    Article  ADS  MathSciNet  Google Scholar 

  15. Chen, K., Albeverio, S., Fei, S.-M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95, 040504 (2005). https://doi.org/10.1103/PhysRevLett.95.040504

    Article  ADS  MathSciNet  Google Scholar 

  16. Yao, H., Qi, X.-L.: Entanglement entropy and entanglement spectrum of the kitaev model. Phys. Rev. Lett. 105, 080501 (2010). https://doi.org/10.1103/PhysRevLett.105.080501

    Article  ADS  Google Scholar 

  17. Islam, R., Ma, R., Preiss, P.M., Eric Tai, M., Lukin, A., Rispoli, M., Greiner, M.: Measuring entanglement entropy in a quantum many-body system. Nature 528, 77 (2015). https://doi.org/10.1038/nature15750

    Article  ADS  Google Scholar 

  18. Eisert, J., Cramer, M., Plenio, M.B.: Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277 (2010). https://doi.org/10.1103/RevModPhys.82.277

    Article  ADS  MathSciNet  Google Scholar 

  19. Calabrese, P., Cardy, J.: Evolution of entanglement entropy in one-dimensional systems. J. Stat. Mech. Theory Exp. 2005, P04010 (2005). https://doi.org/10.1088/1742-5468/2005/04/P04010

    Article  MathSciNet  Google Scholar 

  20. Romero, G., López, C.E., Lastra, F., Solano, E., Retamal, J.C.: Direct measurement of concurrence for atomic two-qubit pure states. Phys. Rev. A 75, 032303 (2007). https://doi.org/10.1103/PhysRevA.75.032303

    Article  ADS  Google Scholar 

  21. Brydges, T., Elben, A., Jurcevic, P., Vermersch, B., Maier, C., Lanyon, B.P., Zoller, P., Blatt, R., Roos, C.F.: Probing Renyi entanglement entropy via randomized measurements. Science 364, 260 (2019). https://doi.org/10.1126/science.aau4963

    Article  ADS  Google Scholar 

  22. Abanin, D.A., Demler, E.: Measuring entanglement entropy of a generic many-body system with a quantum switch. Phys. Rev. Lett. 109, 020504 (2012). https://doi.org/10.1103/PhysRevLett.109.020504

    Article  ADS  Google Scholar 

  23. Daley, A.J., Pichler, H., Schachenmayer, J., Zoller, P.: Measuring entanglement growth in quench dynamics of bosons in an optical lattice. Phys. Rev. Lett. 109, 020505 (2012). https://doi.org/10.1103/PhysRevLett.109.020505

    Article  ADS  Google Scholar 

  24. Li, Y., Zou, Y., Glorioso, P., Altman, E., Fisher, M.P.A.: Cross entropy benchmark for measurement-induced phase transitions. Phys. Rev. Lett. 130, 220404 (2023). https://doi.org/10.1103/PhysRevLett.130.220404

    Article  ADS  MathSciNet  Google Scholar 

  25. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001). https://doi.org/10.1103/PhysRevLett.88.017901

    Article  ADS  Google Scholar 

  26. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008). https://doi.org/10.1103/PhysRevA.77.042303

    Article  ADS  Google Scholar 

  27. Dillenschneider, R.: Quantum discord and quantum phase transition in spin chains. Phys. Rev. B 78, 224413 (2008). https://doi.org/10.1103/PhysRevB.78.224413

    Article  ADS  Google Scholar 

  28. Chernyavskiy, A.Y., Doronin, S.I., Fel’dman, E.B.: Bipartite quantum discord in a multiqubit spin chain. Phys. Scr. 2014, 014007 (2014). https://doi.org/10.1088/0031-8949/2014/T160/014007

    Article  Google Scholar 

  29. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012). https://doi.org/10.1103/RevModPhys.84.1655

    Article  ADS  Google Scholar 

  30. Lanyon, B.P., Jurcevic, P., Hempel, C., Gessner, M., Vedral, V., Blatt, R., Roos, C.F.: Experimental generation of quantum discord via noisy processes. Phys. Rev. Lett. 111, 100504 (2013). https://doi.org/10.1103/PhysRevLett.111.100504

    Article  ADS  Google Scholar 

  31. Chen, Y.-X., Li, S.-W.: Quantum correlations in topological quantum phase transitions. Phys. Rev. A 81, 032120 (2010). https://doi.org/10.1103/PhysRevA.81.032120

    Article  ADS  Google Scholar 

  32. Song, J.-L., Gu, S.-J., Lin, H.-Q.: Quantum entanglement in the \({S=1/2}\) spin ladder with ring exchange. Phys. Rev. B 74, 155119 (2006). https://doi.org/10.1103/PhysRevB.74.155119

    Article  ADS  Google Scholar 

  33. Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010). https://doi.org/10.1103/PhysRevLett.105.095702

    Article  ADS  Google Scholar 

  34. Maziero, J., Céleri, L.C., Serra, R.M., Sarandy, M.S.: Long-range quantum discord in critical spin systems. Phys. Lett. A 376, 1540 (2012). https://doi.org/10.1016/j.physleta.2012.03.029

    Article  ADS  Google Scholar 

  35. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011). https://doi.org/10.1103/PhysRevA.84.042109

    Article  ADS  Google Scholar 

  36. Campbell, S., Mazzola, L., De Chiara, G., Apollaro, T.J.G., Plastina, F., Busch, T., Paternostro, M.: Global quantum correlations in finite-size spin chains. New J. Phys. 15, 043033 (2013). https://doi.org/10.1088/1367-2630/15/4/043033

    Article  ADS  Google Scholar 

  37. Sun, Z.-Y., Liao, Y.-E., Guo, B., Huang, H.-L.: Global quantum discord in matrix product states and the application. Ann. Phys. 359, 115 (2015). https://doi.org/10.1016/j.aop.2015.04.015

    Article  MathSciNet  Google Scholar 

  38. Shen, L.-H., Guo, B., Sun, Z.-Y., Wang, M., Wu, Y.-Y.: Global quantum discord and thermal tensor network in XXZ chains at finite temperatures. Phys. B: Condens. Matter. 565, 1 (2019). https://doi.org/10.1016/j.physb.2019.04.021

    Article  ADS  Google Scholar 

  39. Bao, J., Guo, B., Liu, Y.-H., Shen, L.-H., Sun, Z.-Y.: Multipartite nonlocality and global quantum discord in the antiferromagnetic Lipkin–Meshkov–Glick model. Phys. B: Condens. Matter. 593, 412297 (2020). https://doi.org/10.1016/j.physb.2020.412297

    Article  Google Scholar 

  40. Bao, J., Liu, Y.-H., Guo, B.: Global quantum discord in the Lipkin-Meshkov-Glick model at zero and finite temperatures. J. Phys: Condens. Matter. 33, 495401 (2021). https://doi.org/10.1088/1361-648x/ac2647

    Article  Google Scholar 

  41. Cruz, C., Anka, M.F., Rastegar-Sedehi, H.-R., Castro, C.: Geometric quantum discord and coherence in a dipolar interacting magnetic system. Phys. Scr. 98, 075105 (2023). https://doi.org/10.1088/1402-4896/acde1d

    Article  ADS  Google Scholar 

  42. Hajihoseinlou, H., Ahansaz, B., Eghbalifam, F., Behboudnia, M.: Classical-driving-assisted quantum correlation. Quantum Inf. Process. 22, 136 (2023). https://doi.org/10.1007/s11128-023-03885-7

    Article  ADS  MathSciNet  Google Scholar 

  43. Sen, P.: Quantum phase transitions in the Ising model in a spatially modulated field. Phys. Rev. E 63, 016112 (2000). https://doi.org/10.1103/PhysRevE.63.016112

    Article  ADS  Google Scholar 

  44. Ovchinnikov, A.A., Dmitriev, D.V., Krivnov, V.Y., Cheranovskii, V.O.: Antiferromagnetic Ising chain in a mixed transverse and longitudinal magnetic field. Phys. Rev. B 68, 214406 (2003). https://doi.org/10.1103/PhysRevB.68.214406

    Article  ADS  Google Scholar 

  45. Lin, Y.-P., Kao, Y.-J., Chen, P., Lin, Y.-C.: Griffiths singularities in the random quantum Ising antiferromagnet: a tree tensor network renormalization group study. Phys. Rev. B 96, 06442064427 (2017). https://doi.org/10.1103/PhysRevB.96.064427

    Article  ADS  Google Scholar 

  46. Bonfim, O.F.D.A., Boechat, B., Florencio, J.: Ground-state properties of the one-dimensional transverse Ising model in a longitudinal magnetic field. Phys. Rev. E 99, 012122 (2019). https://doi.org/10.1103/PhysRevE.99.012122

    Article  ADS  MathSciNet  Google Scholar 

  47. Lajkó, P., Iglói, F.: Mixed-order transition in the antiferromagnetic quantum Ising chain in a field. Phys. Rev. B 103, 174404 (2021). https://doi.org/10.1103/PhysRevB.103.174404

    Article  ADS  Google Scholar 

  48. Liu, Y., Li, M., Bao, J., Guo, B., Sun, Z.: Multipartite nonlocality in an Ising model with a tilted magnetic field at zero and finite temperatures. Phys. Lett. A 450, 128396 (2022). https://doi.org/10.1016/j.physleta.2022.128396

    Article  Google Scholar 

  49. Peng, C., Cui, X.: Bridging quantum many-body scars and quantum integrability in Ising chains with transverse and longitudinal fields. Phys. Rev. B 106, 214311 (2022). https://doi.org/10.1103/PhysRevB.106.214311

    Article  ADS  Google Scholar 

  50. Simon, J., Bakr, W.S., Ma, R., Tai, M.E., Preiss, P.M., Greiner, M.: Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307 (2011). https://doi.org/10.1038/nature09994

    Article  ADS  Google Scholar 

  51. Sachdev, S., Sengupta, K., Girvin, S.M.: Mott insulators in strong electric fields. Phys. Rev. B 66, 075128 (2002). https://doi.org/10.1103/PhysRevB.66.075128

    Article  ADS  Google Scholar 

  52. Bauer, B., Carr, L.D., Evertz, H.G., Feiguin, A., Freire, J., Fuchs, S., Gamper, L., Gukelberger, J., Gull, E., Guertler, S., Hehn, A., Igarashi, R., Isakov, S.V., Koop, D., Ma, P.N., Mates, P., Matsuo, H., Parcollet, O., Pawłowski, G., Picon, J.D., Pollet, L., Santos, E., Scarola, V.W., Schollwöck, U. Silva, C., Surer, B., Todo, S., Trebst, S., Troyer, M., Wall, M.L., Werner, P., Wessel, S.: The ALPS project release 2.0: open source software for strongly correlated systems, Stat. Mech. Theory Exp. 2011, P05001 ( 2011) https://doi.org/10.1088/1742-5468/2011/05/p05001

  53. Fishman, M., White, S.R., Stoudenmire, E.M.: The ITensor software library for tensor network calculations, arXiv:2007.14822( 2020)

  54. Liu, B.-Q., Shao, B., Zou, J.: Quantum discord for a central two-qubit system coupled to an \(\mathit{XY}\)-spin-chain environment. Phys. Rev. A 82, 062119 (2010). https://doi.org/10.1103/PhysRevA.82.062119

    Article  ADS  Google Scholar 

  55. Montenegro, V., Mishra, U., Bayat, A.: Global sensing and its impact for quantum many-body probes with criticality. Phys. Rev. Lett. 126, 200501 (2021). https://doi.org/10.1103/PhysRevLett.126.200501

    Article  ADS  MathSciNet  Google Scholar 

  56. Campostrini, M., Nespolo, J., Pelissetto, A., Vicari, E.: Finite-size scaling at first-order quantum transitions. Phys. Rev. Lett. 113, 070402 (2014). https://doi.org/10.1103/PhysRevLett.113.070402

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11975175).

Author information

Authors and Affiliations

Authors

Contributions

Guo proposed the idea. Xiao and Shen carried out the calculations. Xiao, Zhang, Shen, Bao and Guo wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Bin Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, W., Zhang, W., Shen, L. et al. Global quantum discord in an Ising model with transverse and longitudinal magnetic fields. Quantum Inf Process 23, 347 (2024). https://doi.org/10.1007/s11128-024-04567-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04567-8

Keywords

Navigation