Skip to main content
Log in

On an algorithm for solving Fredholm integrals of the first kind

  • Published:
Statistics and Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper we use an iterative algorithm for solving Fredholm equations of the first kind. The basic algorithm and convergence properties are known under certain conditions, but we provide a simpler convergence proof without requiring the restrictive conditions that have previously been needed. Several examples of independent interest are given, including mixing density estimation and a first passage time density function involving Brownian motion. We also develop the basic algorithm to include functions which are not necessarily non-negative and, again, present illustrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Breiman, L.: First exit times from a square root boundary. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 2, pp. 9–16 (1966)

  • Chae, M., Walker, S.G.: An EM-based iterative method for solving large sparse linear systems. In: Linear and Multilinear Algebra, pp. 1–18 (2018)

  • Chae, M., Martin, R., Walker, S.G.: Convergence of an iterative algorithm to the nonparametric MLE of a mixing distribution. Stat. Probab. Lett. 140, 142–146 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Corduneanu, C.: Integral Equations and Applications. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  • Csiszár, I.: \(I\)-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3, 146–158 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Csiszár, I., Tusnády, G.: Information geometry and alternating minimization procedures. Stat. Decis. Suppl. Issue 1, 205–237 (1984)

    MathSciNet  MATH  Google Scholar 

  • Dykstra, R.L.: An iterative procedure for obtaining \(I\)-projections onto the intersection of convex sets. Ann. Probab. 13, 975–984 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Eggermont, P.: Nonlinear smoothing and the EM algorithm for positive integral equations of the first kind. Appl. Math. Optim. 39(1), 75–91 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Groetsch, C.: Integral equations of the first kind, inverse problems and regularization. J. Phys. Conf. Ser. 73, 1–32 (2007)

  • Hansen, P.C.: Linear Intergal Equations: Applied Mathematical Sciences, 2nd edn, vol. 82. Springer, New York (1999)

  • Kleijn, B.J., van der Vaart, A.W.: Misspecification in infinite-dimensional Bayesian statistics. Ann. Stat. 34, 837–877 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Kondor, A.: Method of convergent weights-an iterative procedure for solving Fredholm’s integral equations of the first kind. Nuclear Instrum. Methods Phys. Res. 216, 177–181 (1983)

    Article  Google Scholar 

  • Laird, N.: Nonparametric maximum likelihood estimation of a mixing distribution. J. Am. Stat. Assoc. 73, 805–811 (1978)

    Article  MATH  Google Scholar 

  • Landweber, L.: An iteration formula for Fredholm integral equations of the first kind. Am. J. Math. 73, 615–624 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, L., Levine, M., Zhu, Y.: A functional EM algorithm for mixing density estimation via nonparametric penalized likelihood maximization. J. Comput. Gr. Stat. 18, 481–504 (2009)

    Article  MathSciNet  Google Scholar 

  • Martin, R., Tokdar, S.T.: Asymptotic properties of predictive recursion: robustness and rate of convergence. Electron. J. Stat. 3, 1455–1472 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Morozov, V.A.: Methods of Solving Incorrectly Posed Problems. Springer, New York (1984)

    Book  Google Scholar 

  • Mülthei, H.: Iterative continuous maximum-likelihood reconstruction method. Math. Methods Appl. Sci. 15(4), 275–286 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Mülthei, H., Schorr, B., Törnig, W.: On an iterative method for a class of integral equations of the first kind. Math. Methods Appl. Sci. 9(1), 137–168 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Mülthei, H., Schorr, B., Törnig, W.: On properties of the iterative maximum likelihood reconstruction method. Math. Methods Appl. Sci. 11(3), 331–342 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Newton, M.A.: On a nonparametric recursive estimator of the mixing distribution. Sankhyā A 64, 306–322 (2002)

    MathSciNet  MATH  Google Scholar 

  • Patilea, V.: Convex models. MLE and misspecification. Ann. Stat. 29, 94–123 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Peskir, G.: On integral equations arising in the first-passage problem for Brownian motion. J. Integral Equ. Appl. 14, 397–423 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Phillips, D.L.: A technique for the numerical solution of certain integral equations of the first kind. J. Assoc. Comput. Mach. 9, 84–97 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  • R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2015)

  • Ramm, A.G.: Inverse Problems. Springer, New York (2005)

    MATH  Google Scholar 

  • Sheather, S.J., Jones, M.C.: A reliable data-based bandwidth selection method for kernel density estimation. J. R. Stat. Soc. Ser. B 53, 683–690 (1991)

    MathSciNet  MATH  Google Scholar 

  • Shyamalkumr, N.D.: Cyclic \(I_0\) projections and its applications in statistics. Technical Report #96–24, Department of Statistics, Purdue University (1996)

  • Tokdar, S.T., Martin, R., Ghosh, J.K.: Consistency of a recursive estimate of mixing distributions. Ann. Stat. 37, 2502–2522 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Valov, A.V.: First passage times: integral equations, randomization and analytical approximations. PhD Thesis, Department of Statistics, University of Toronto (2009)

  • Vangel, M.: Iterative algorithms for integral equations of the first kind with applications to statistics. Technical Report, PHD Thesis, Harvard University. Technical Report ONR-C-12 (1992)

  • Vardi, Y., Lee, D.: From image deblurring to optimal investments: maximum likelihood solutions for positive linear inverse problems. J. R. Stat. Soc. Ser. B 55, 569–612 (1993)

    MathSciNet  MATH  Google Scholar 

  • Vardi, Y., Shepp, L.A., Kaufman, L.: A statistical model for positron emission tomography (with comments). J. Am. Stat. Assoc. 80(389), 8–37 (1985)

    Article  MATH  Google Scholar 

  • Wing, G.M.: A Primer on Integral Equations of the First Kind: The Problem of Deconvolution and Unfolding. SIAM, Philadelphia (1990)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the reviewers’ helpful comments on a previous version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minwoo Chae.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Martin and Walker acknowledge NSF support with grants DMS-1611791 and DMS-1612891, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, M., Martin, R. & Walker, S.G. On an algorithm for solving Fredholm integrals of the first kind. Stat Comput 29, 645–654 (2019). https://doi.org/10.1007/s11222-018-9829-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-018-9829-z

Keywords

Navigation