Skip to main content

Advertisement

Log in

Fiber-Distributed Indoor High Bitrate Optical Wireless System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we describe a wideband Indoor Optical Wireless distribution system based on an infrared communication channel using a dedicated distribution architecture. The idea is to provide narrow line-of-sight indoor free-space optical cells at very high rates through an optical fiber network. The wavelength used is 1,550 nm for eye safety and optical power budget reasons. To validate the system performance using standard On-Off Keying modulation, we calculate the power budget and simulate the overall link, showing that an implementation with commercially available components can lead to 2.5 Gbps operational optical wireless links.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bouchet, O., El Tabach, M., Wolf, M., O’Brien, D., Faulkner, G., Walewski, J., Randel, S., Franke, M., Nerreter, S., Langer, K.-D., Grubor, J., & Kamalakis, T. (2008). Hybrid wireless optics (HWO): Building the next-generation home network. In: 6th International symposium on communications systems, networks and, digital signal processing (pp. 283–287).

  2. Green, E. R., & Roy, S. (2004). System architectures for high-rate ultra-wideband communication systems: A review of recent developments. In Intel Labs-2011 NE 25th Ave., Hillsboro.

  3. Park, C. S., Lee, C. G., & Park, C. S. (2007). Experimental demonstration of 1.25 Gb/s radio-over-fiber downlink using sbs based photonic upconversion. IEEE Photonics Technology Letters, 19(22), 1828–1830.

    Article  Google Scholar 

  4. Koike, Y., & Ishigure, T. (2006). High-bandwidth plastic optical fiber for fiber to the display. Journal of Lightwave Technology, 24(12), 4541–4553.

    Article  Google Scholar 

  5. Koonen, A. M. J., & Larrod, M. G. (2008). Radio-over-MMF techniques part ii: Microwave to millimeter-wave systems. Journal of Lightwave Technology, 26(15), 2396–2408.

    Article  Google Scholar 

  6. Gfeller, F. R., & Bapst, U. (1979). Wireless in-house data communication via diffuse infrared radiation. Proceedings of IEEE, 67(11), 1474–1486.

    Article  Google Scholar 

  7. Close, D. H. (1975). Holographic optical elements. Optical Engineering, 14, 408–419.

    Article  Google Scholar 

  8. European Standard EN 60825-1:2007 edition 2: Safety of laser products—Part 1: Equipement classification and requirements, 2007.

  9. Virtuani, A., Lotter, E., & Powalla, M. (2006). Influence of the light source on the low-irradiance performance of solar cells. Solar Energy Materials and Solar Cells, 90(14), 2141–2149.

    Article  Google Scholar 

  10. Montero, D., Gasulla, I., Mollers, I., Jager, D., Capmany, J., & Vasquez, C. (2009). Experimental analysis of temperature dependance in multimode optical fiber links for radio-over-fiber applications. In 11th International conference in transparent optical networks, ICTON (pp. 1–4).

  11. Polley, A., & Ralph, S. E. (2008, February). 100m, 40 Gbps plastic optical fiber link. In Optical fiber communication Conference (OFC).

  12. Hajjar, H. A., Fracasso, B., & Leroux, D. (2011a, September). Transmission characterization of PF-GI-POF for high bitrate indoor wireless network. In 20th International conference on polymer optical fibers, Bilbao, Spain.

  13. Hajjar, H. A., Montero, D. S., Lallana, P. C., Fracasso, B., & Vasquez, C. (2011b, September). Offset-launch characterization of transmission loss in PF-GI-POF for wireless home networks. In 20th International conference on polymer optical fibers, Bilbao, Spain.

  14. Ning, X., Winston, R., & O’Gallagher, J. (1987). Dielectric totally internally reflecting concentrators. Applied Optics, 26(2), 300–305.

    Article  Google Scholar 

  15. Smyth, P. P., Mc Cullagh, M., Wisely, D., Wood, D., Ritchie, S., Eardley, P., & Cassidy, S. (1993). Optical wireless local area networks—Enabling technologies, 11(2), 56–64

  16. Ho, K.-P., & Kahn, J. M. (1995). Compound parabolic concentrators for narrowband wireless infrared receivers. Optical Engineering, 34(5), 1385–1395.

    Article  Google Scholar 

  17. http://www.femto.de/datasheet/DE-HSA-DX-S-2G-IN-R8.pdf.

  18. Eardley, P. L., Wisely, D., Wood, D., & McKee, P. (1996). Holograms for optical wireless LANs. IEE Proceedings, 143(6), 365–369.

    Google Scholar 

  19. http://www.vpiphotonics.com/.

  20. http://www.thorlabs.com/.

Download references

Acknowledgments

The authors would like to thank Institut Telecom, France, for partly funding this project, the Collège Doctoral International/Université Européenne de Bretagne (CDI/UEB) and “Conseil Régional de Bretagne” for their financial help, and Marie-Laure Moulinard for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani Al Hajjar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al Hajjar, H., Fracasso, B. & Leroux, D. Fiber-Distributed Indoor High Bitrate Optical Wireless System. Wireless Pers Commun 72, 1771–1782 (2013). https://doi.org/10.1007/s11277-013-1134-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1134-8

Keywords

Navigation