Skip to main content

Advertisement

Log in

Advancements in Patch Antenna Design for Sub-6 GHz 5G Smartphone Application: A Comprehensive Review

  • Review
  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The increasing need for swift, low-latency, and reliable wireless transmission in the age of 5G has led to rapid advancements in 5G technology. MIMO systems, originally implemented in 4G applications, remain an integral part of 5G networks. The sub-6-GHz frequency band holds promise for 5G applications, such as improved link and reduced transmission losses. This comprehensive review explores advancements in patch antenna (PA) structure for sub-6 GHz 5G smartphone utilization, addressing the challenges posed by space constraints in mobile devices and the need for efficient integration of antennas. The paper discusses the significance of MIMO antennas in modern cellular communication, particularly in the context of 5G technology, which utilizes sub-6 GHz. Reconfigurable antennas (RAs) and Microstrip Patch Antennas (MPAs) are introduced as solutions, highlighting their compact, cost-effective, and flexible nature. The review delves into critical factors such as geometry, substrate selection, and feed design in optimizing patch antenna performance. It also covers the importance of addressing both sub-6 GHz and mm-wave bands within a single antenna system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Chakraborty, S., Rahman, M. A., Hossain, M. A., Mobashsher, A. T., Nishiyama, E., & Toyoda, I. (2020). A 4-element MIMO antenna with orthogonal circular polarization for sub-6 GHz 5G cellular applications. SN Applied Sciences, 2, 1–13.

    Google Scholar 

  2. Prabhu, T., & Pandian, S. C. (2021). Design and development of planar antenna array for mimo application. Wireless Networks, 27, 939–946. https://doi.org/10.1007/s11276-020-02253-y

    Article  Google Scholar 

  3. Prabhu, T., & Chenthur pandian, S. (2021). Design and implementation of T-shaped planar antenna for MIMO applications. Computers Materials Continua, 69(2), 2549–2562. https://doi.org/10.32604/cmc.2021.018793

    Article  Google Scholar 

  4. Suganya, E., Pushpa, T. A. J. M., & Prabhu, T. (2023). Design and analysis of circular patch antenna for microwave applications. In 2023 International conference on applied intelligence and sustainable computing (ICAISC), pp (1–4). IEEE https://doi.org/10.1109/ICAISC58445.2023.10200100

  5. Suganya, E., Prabhu, T., Palanisamy, S., Malik, P. K., Bilandi, N., & Gehlot, A. (2023). An isolation improvement for closely spaced MIMO antenna using λ/4 distance for WLAN applications. International Journal of Antennas and Propagation. https://doi.org/10.1155/2023/4839134

    Article  Google Scholar 

  6. Prabhu, T., Pandian, S. C., & Suganya, E. (2019, March). Contact feeding techniques of rectangular microstrip patch antenna for 5 GHz Wi-Fi. In 2019 5th International conference on advanced computing & communication systems (ICACCS), (pp 1123–1127). IEEE. https://doi.org/10.1109/ICACCS.2019.8728540

  7. Palanisamy, S., Balakumaran, T., Suganya, E., Prabhu, T., & Khalaf, O. I. (2022). Design of a compact multiband fractal antenna using ANN and firefly algorithm for wireless body area network. Printed Antennas: Design and Challenges, 153.

  8. Prabhu, T., Suganya, E., Ajayan, J., & Kumar, P. S. (2021). An intensive study of dual patch antennas with improved isolation for 5G mobile communication systems. In Future Trends in 5G and 6G, pp (205–217), CRC Press.

  9. Prabhu, T., Chenthur Pandian, S., & Suganya, E. (2021). Investigating the performance of planar inverted-F antenna (PIFA) in dual resonant Mode. 2nd EAI international conference on big data innovation for sustainable cognitive computing (pp. 33–46). Springer.

    Chapter  Google Scholar 

  10. Tütüncü, B., & Kösem, M. (2022). Substrate analysis on the design of wide-band antenna for sub-6 GHz 5G communication. Wireless Personal Communications, 125(2), 1523–1535.

    Article  Google Scholar 

  11. Kishore, S., & Rajak, A. A. (2022). Microstrip Patch Antenna with C Slot for 5G Communication at 30 GHz. Emerging Science Journal, 6(6), 1315–1327.

    Article  Google Scholar 

  12. Jebril, I., Dhanaraj, P., Abdulsahib, G. M., Palanisamy, S., Prabhu, T., & Khalaf, O. I. (2022). Analysis of electrically couple SRR EBG structure for sub 6 GHz wireless applications. Advances in decision sciences, 26(5), 102–123.

    Article  Google Scholar 

  13. Ishteyaq, I., & Muzaffar, K. (2022). Multiple input multiple output (MIMO) and fifth generation (5G): An indispensable technology for sub-6 GHz and millimeter wave future generation mobile terminal applications. International Journal of Microwave and Wireless Technologies, 14(7), 932–948.

    Article  Google Scholar 

  14. Sharma, S., Tripathi, C. C., & Rishi, R. (2017). Impedance matching techniques for microstrip patch antenna. Indian Journal of Science and Technology, 10(28), 1–16.

    Article  Google Scholar 

  15. Al-Gburi, A. J. A., Zakaria, Z., Ibrahim, I. M., & Halim, E. B. A. 2022 Microstrip patch antenna arrays design for 5G wireless backhaul application at 3.5 GHz. In Recent Advances in Electrical and Electronic Engineering and Computer Science: Selected articles from ICCEE 2021, Springer, Singapore, 77–88.

  16. Islam, S., Zada, M., & Yoo, H. (2021). Low-pass filter based integrated 5G smartphone antenna for sub-6-GHz and mm-wave bands. IEEE Transactions on Antennas and Propagation, 69(9), 5424–5436.

    Article  Google Scholar 

  17. Zada, M., Shah, I. A., & Yoo, H. (2021). Integration of sub-6-GHz and mm-wave bands with a large frequency ratio for future 5G MIMO applications. IEEE Access, 9, 11241–11251.

    Article  Google Scholar 

  18. Mishra, R., Dandotiya, R., Kapoor, A., & Kumar, P. (2021). Compact high gain multiband antenna based on split ring resonator and inverted F slots for 5G industry applications. The Applied Computational Electromagnetics Society Journal (ACES), 36(8), 999–1007.

  19. Ghadeer, S. H., Rahim, S. K. A., Alibakhshikenari, M., Virdee, B. S., Elwi, T. A., Iqbal, A., & Al Hasan, M. (2023). An innovative fractal monopole MIMO antenna for modern 5G applications. AEU-International Journal of Electronics and Communications, 159, 154480.

    Google Scholar 

  20. Sharma, S., & Kumar, M. (2023). Design and Analysis of a 4-Port MIMO Microstrip Patch Antenna for 5G Mid Band Applications. Progress In Electromagnetics Research C, 129, 231–243.

    Article  Google Scholar 

  21. Rao, M. R., & Alagirisamy, M. Compact tapered log periodicχ–antenna for sub 6-GHz 5G Applications.

  22. Liang, Q., Aliakbari, H., & Lau, B. K. (2022). Co-designed millimeter-wave and Sub-6 GHz antenna for 5G smartphones. IEEE Antennas and Wireless Propagation Letters, 21(10), 1995–1999.

    Article  Google Scholar 

  23. Rafique, U., Khan, S., Ahmed, M. M., Kiani, S. H., Abbas, S. M., Saeed, S. I., Alibakhshikenari, M., & Dalarsson, M. (2022). Uni-planar MIMO antenna for sub-6 GHz 5G mobile phone applications. Applied Sciences, 12(8), 3746. https://doi.org/10.3390/app12083746

    Article  Google Scholar 

  24. Lai, F. P., Mi, S. Y., & Chen, Y. S. (2022). Design and integration of millimeter-wave 5G and WLAN antennas in perfect full-screen display smartphones. Electronics, 11(6), 957.

    Article  Google Scholar 

  25. Parchin, N. O., Amar, A. S. I., Darwish, M., Moussa, K. H., See, C. H., Abd-Alhameed, R. A., Alwadai, N. M., & Mohamed, H. G. (2022). Four-element/eight-port MIMO antenna system with diversity and desirable radiation for sub 6 GHz modern 5G smartphones. IEEE Access, 10, 133037–133051. https://doi.org/10.1109/ACCESS.2022.3227199

    Article  Google Scholar 

  26. Zahid, M. N., Gaofeng, Z., Kiani, S. H., Rafique, U., Abbas, S. M., Alibakhshikenari, M., & Dalarsson, M. (2022). H-shaped eight-element dual-band MIMO antenna for sub-6 GHz 5G smartphone applications. IEEE Access, 10, 85619–85629.

    Article  Google Scholar 

  27. Aathmanesan, T. (2021). Novel slotted hexagonal patch antenna for sub-6 ghz 5g wireless applications. ICTACT Journal On Microelectronics, 6(04), 1010–1013.

    Google Scholar 

  28. Din, I. U., Ullah, S., Mufti, N., Ullah, R., Kamal, B., & Ullah, R. (2023). Metamaterial-based highly isolated MIMO antenna system for 5G smartphone application. International Journal of Communication Systems, 36(3), e5392.

    Article  Google Scholar 

  29. Chen, H. D., Tsai, Y. C., & Kuo, C. (2020). Broadband eight-antenna array design for sub-6 GHz 5G NR bands metal-frame smartphone applications. IEEE Antennas and Wireless Propagation Letters, 19(7), 1078–1082.

    Article  Google Scholar 

  30. Hossain, M. M., Alam, M. J., & Latif, S. I. (2021). Orthogonal printed microstrip antenna arrays for 5G millimeter-wave applications. Micromachines, 13(1), 53.

    Article  Google Scholar 

  31. Sghaier, N., & Latrach, L. (2022). Design and analysis of wideband MIMO antenna arrays for 5G smartphone application. International Journal of Microwave and Wireless Technologies, 14(4), 511–523.

    Article  Google Scholar 

  32. Molins-Benlliure, J., Cabedo-Fabrés, M., Antonino-Daviu, E., & Ferrando-Bataller, M. (2022). sector unit-cell methodology for the design of Sub-6 GHz 5G MIMO antennas. IEEE Access, 10, 100824–100836.

    Article  Google Scholar 

  33. Naganathan, S. B. T., Dhandapani, S., & Packirisamy, T. (2022). Analysis of super-solar integrated patch antenna for sub-6 GHz and beyond 6 GHz millimeter wave 5G applications. Applied Computational Electromagnetics Society Journal, 37(10), 1039–1050.

    Google Scholar 

  34. Khan, J., Ullah, S., Tahir, F. A., Tubbal, F., & Raad, R. (2021). A sub-6 GHz MIMO antenna array for 5G wireless terminals. Electronics, 10(24), 3062.

    Article  Google Scholar 

  35. Trichopoulos, G. C., Theofanopoulos, P., Kashyap, B., Shekhawat, A., Modi, A., Osman, T., Kumar, S., Sengar, A., Chang, A., & Alkhateeb, A. (2022). Design and evaluation of reconfigurable intelligent surfaces in real-world environment. IEEE Open Journal of the Communications Society, 3, 462–474. https://doi.org/10.1109/OJCOMS.2022.3158310

    Article  Google Scholar 

  36. Parchin, N. O., Al-Yasir, Y. I., Abdulkhaleq, A. M., Basherlou, H. J., Ullah, A., & Abd-Alhameed, R. A. (2020). A New broadband MIMO antenna system for sub 6 GHz 5G cellular Communications. In 2020 14th european conference on antennas and propagation (EuCAP), (pp 1–4), IEEE.

  37. Alibakhshikenari, M., Virdee, B. S., Benetatos, H., Ali, E. M., Soruri, M., Dalarsson, M., & Limiti, E. (2022). An innovative antenna array with high inter element isolation for sub-6 GHz 5G MIMO communication systems. Scientific Reports, 12(1), 7907.

    Article  Google Scholar 

  38. Megahed, A. A., Abdelazim, M., Abdelhay, E. H., & Soliman, H. Y. (2022). Sub-6 GHz highly isolated wideband MIMO antenna arrays. IEEE Access, 10, 19875–19889.

    Article  Google Scholar 

  39. Sharma, R., Khanna, R., & Singla, G. (2022). A miniaturized highly isolated double negative metasurface MIMO antenna for sub-6GHz band. Sādhanā, 47(4), 202.

    Article  Google Scholar 

  40. Araghi, A., Khalily, M., Safaei, M., Bagheri, A., Singh, V., Wang, F., & Tafazolli, R. (2022). Reconfigurable intelligent surface (RIS) in the sub-6 GHz band: Design, implementation, and real-world demonstration. IEEE Access, 10, 2646–2655.

    Article  Google Scholar 

  41. Khalid, H., Awan, W. A., Hussain, M., Fatima, A., Ali, M., Hussain, N., & Limiti, E. (2021). Design of an integrated sub-6 GHz and mmWave MIMO antenna for 5G handheld devices. Applied Sciences, 11(18), 8331.

    Article  Google Scholar 

  42. Hussain, M., Islam, T., Alzaidi, M. S., Elkamchouchi, D. H., Alsunaydih, F. N., Alsaleem, F., & Alhassoon, K. (2023). Single iterated fractal inspired UWB antenna with reconfigurable notch bands for compact electronics. Heliyon, 9(11), 1–10.

  43. Hussain, M., Awan, W. A., Alzaidi, M. S., & Elkamchouchi, D. H. (2023). Self-decoupled tri band MIMO antenna operating over ISM, WLAN and C-band for 5G applications. Heliyon, 9, (7).

  44. Hussain, M., Rafique, U., Zahra, H., Abbas, S. M., & Mukhopadhyay, S. (2023). A compact and geometrically simple CPW fed antenna for 2.4/5.4 GHz ISM and WLAN applications. In 2023 IEEE international symposium on antennas and propagation and USNC-URSI radio science meeting (USNC-URSI), (pp 1199–1200), IEEE.

  45. Hussain, M., Rizvi, S. N. R., Awan, W. A., Husain, N., Halima, & Hameed, A. (2022). On-demand frequency reconfigurable flexible antenna for 5gsub-6-GHz and ISM band applications. In WITS 2020: In Proceedings of the 6th International Conference on Wireless Technologies, Embedded, and Intelligent Systems, (pp 1085–1092). Springer, Singapore.

  46. Paul, L. C., Shaki, G. A., Rani, T., & Lee, W. S. (2023). A compact UWB array antenna for microwave imaging/WiMAX/Wi-Fi/Sub-6 GHz Applications. In The fourth industrial revolution and beyond: select proceedings of IC4IR, (pp 349–360), Springer Nature, Singapore.

  47. Malfajani, R. S., Niknam, H., Bodkhe, S., Therriault, D., Laurin, J. J., & Sharawi, M. S. (2023). A dual wide-band mushroom-shaped dielectric antenna for 5G Sub-6-GHz and mm-wave bands. IEEE Open Journal of Antennas and Propagation, 4, 614–625.

    Article  Google Scholar 

  48. Bendaoued, M., Es-saleh, A., Nasiri, B., Lakrit, S., Das, S., Mandry, R., & Faize, A. (2023). Design of a UWB coplanar antenna with step graded ground plane for 5G and modern wireless communication applications. Journal of Nano-and Electronic Physics, 15(4), 1–4.

    Article  Google Scholar 

  49. John, D. M., Vincent, S., Ali, T., & Pathan, S. (2024). Characteristics mode analysis based wideband Sub-6 GHz flexible MIMO antenna using a unique hybrid decoupling structure for wearable applications. Physica Scripta, 99, 035032.

    Article  Google Scholar 

  50. Varheenmaa, H., Ylä-Oijala, P., Lehtovuori, A., & Viikari, V. (2023). Wideband sub-6 GHz MIMO antenna for full-screen metal rim smartphones. IEEE Access, 11, 111888–111896.

    Article  Google Scholar 

  51. Noor, S. K., Jusoh, M., Sabapathy, T., Rambe, A. H., Vettikalladi, H., Albishi, A. M., & Himdi, M. (2023). A patch antenna with enhanced gain and bandwidth for sub-6 GHz and sub-7 GHz 5G wireless applications. Electronics, 12(12), 2555.

    Article  Google Scholar 

  52. Alwareth, H., Ibrahim, I. M., Zakaria, Z., Al-Gburi, A. J. A., Ahmed, S., & Nasser, Z. A. (2022). A wideband high-gain microstrip array antenna integrated with frequency-selective surface for Sub-6 GHz 5G applications. Micromachines, 13(8), 1215.

    Article  Google Scholar 

  53. Nakmouche, M. F., Allam, A. M., Fawzy, D. E., & Lin, D. B. (2021). Development of a high gain FSS reflector backed monopole antenna using machine learning for 5G applications. Progress In Electromagnetics Research M, 105, 183–194.

    Article  Google Scholar 

  54. Hasan, M. M., Islam, M. T., Samsuzzaman, M., Baharuddin, M. H., Soliman, M. S., Alzamil, A., & Islam, M. S. (2022). Gain and isolation enhancement of a wideband MIMO antenna using metasurface for 5G sub-6 GHz communication systems. Scientific reports, 12(1), 9433.

    Article  Google Scholar 

  55. Mishra, R., Dandotiya, R., Kapoor, A., & Kumar, P. (2021). Compact high gain multiband antenna based on split ring resonator and inverted F slots for 5G industry applications. The Applied Computational Electromagnetics Society Journal (ACES), 36(8), 999–1007.

  56. Kapoor, A., Mishra, R., & Kumar, P. (2021). A compact high gain printed antenna with frequency selective surface for 5G wideband applications. Advanced Electromagnetics, 10(2), 27–38.

    Article  Google Scholar 

  57. Haydhah, S., Gold, R., Dong, Z., Ferrero, F., Lizzi, L., Sharawi, M. S., & Kishk, A. A. (2023). Multifunction pattern reconfigurable slot-antenna for 5G sub-6 GHz small-cell base-station applications. IEEE Access, 11, 69056–69071.

    Article  Google Scholar 

  58. Kaushal, V., Birwal, A., & Patel, K. (2023). Diversity characteristics of four-element ring slot-based MIMO antenna for sub-6-GHz applications. ETRI Journal, 45, 581.

    Article  Google Scholar 

  59. Ullah, R., Ullah, S., Ullah, R., Din, I. U., Kamal, B., Khan, M. A. H., & Matekovits, L. (2022). Wideband and high gain array antenna for 5G smart phone applications using frequency selective surface. IEEE Access, 10, 86117–86126.

    Article  Google Scholar 

  60. Stanley, M., Huang, Y., Wang, H., Zhou, H., Alieldin, A., & Joseph, S. (2018). A capacitive coupled patch antenna array with high gain and wide coverage for 5G smartphone applications. IEEE Access, 6, 41942–41954.

    Article  Google Scholar 

  61. Jaglan, N., Gupta, S. D., Kanaujia, B. K., & Sharawi, M. S. (2021). 10 element sub-6-GHz multi-band double-T based MIMO antenna system for 5G smartphones. IEEE Access, 9, 118662–118672.

    Article  Google Scholar 

  62. Parchin, N. O., Al-Yasir, Y. I., Basherlou, H. J., & Abd-Alhameed, R. A. (2020). A closely spaced dual-band MIMO patch antenna with reduced mutual coupling for 4G/5G applications. Progress in Electromagnetics Research C, 101, 71–80.

    Article  Google Scholar 

  63. Serghiou, D., Khalily, M., Singh, V., Araghi, A., & Tafazolli, R. (2020). Sub-6 GHz dual-band 8 × 8 MIMO antenna for 5G smartphones. IEEE Antennas and Wireless Propagation Letters, 19(9), 1546–1550.

    Article  Google Scholar 

  64. Lin, C. C., Cheng, S. H., Chen, S. C., & Wei, C. S. (2023). Compact sub 6 GHz dual band twelve-element MIMO antenna for 5G metal-rimmed smartphone applications. Micromachines, 14(7), 1399.

    Article  Google Scholar 

  65. Sabaawi, A. M., Muttair, K. S., Al-Ani, O. A., & Sultan, Q. H. (2022). Dual-band MIMO antenna with defected ground structure for sub-6 GHz 5G applications. Progress In Electromagnetics Research C, 122, 57–66.

    Article  Google Scholar 

  66. Li, Y., Luo, Y., & Yang, G. (2018). Multiband 10-antenna array for sub-6 GHz MIMO applications in 5-G smartphones. IEEE access, 6, 28041–28053.

    Article  Google Scholar 

  67. Prabhu, T., Suganya, E., & Pandian, S. C. (2021). Design and analysis of dual feed patch antenna at 3.5 GHz mid-band 5G technology. International Journal of Intelligence and Sustainable Computing, 1(3), 267. https://doi.org/10.1504/IJISC.2021.119080

    Article  Google Scholar 

  68. Iqbal, J., Illahi, U., Khan, M. A., Rauf, A., Ali, E. M., Bari, I., & Dalarsson, M. (2022). A novel single-fed dual-band dual-circularly polarized dielectric resonator antenna for 5G Sub-6GHz applications. Applied Sciences, 12(10), 5222.

    Article  Google Scholar 

  69. Ishteyaq, I., Masoodi, I. S., & Muzaffar, K. (2021). A compact double-band planar printed slot antenna for sub-6 GHz 5G wireless applications. International Journal of Microwave and Wireless Technologies, 13(5), 469–477.

    Article  Google Scholar 

  70. Kareem, Q. H., & Shihab, R. A. (2023). Reconfigurable compact quad-port MIMO antennas for sub-6 GHz applications. Journal of AL-Farabi for Engineering Sciences, 2(1), 10–10.

    Article  Google Scholar 

  71. Gençoğlan, D. N., Çolak, Ş, & Palandöken, M. (2023). Spiral-resonator-based frequency reconfigurable antenna design for sub-6 GHz Applications. Applied Sciences, 13(15), 8719.

    Article  Google Scholar 

  72. Padmanathan, S., Al-Hadi, A. A., Elshirkasi, A. M., Al-Bawri, S. S., Islam, M. T., Sabapathy, T., & Soh, P. J. (2022). Compact multiband reconfigurable MIMO antenna for sub-6GHz 5G mobile terminal. IEEE Access, 10, 60241–60252.

    Article  Google Scholar 

  73. Ahmad, I., Khan, W. U. R., Dildar, H., Ullah, S., Ullah, S., Mufti, N., & Hussien, M. I. (2021). A pentaband compound reconfigurable antenna for 5G and multi-standard sub-6GHz wireless applications. Electronics, 10(20), 2526.

    Article  Google Scholar 

  74. Abd, A. K., Rasool, J. M., Rahman, Z. A. S., & Al-Yasir, Y. I. (2022). Design and analysis of novel reconfigurable monopole antenna using DIP switch and covering 5G-sub-6-GHz and C-band applications. Electronics, 11(20), 3368.

    Article  Google Scholar 

  75. Dildar, H., Althobiani, F., Ahmad, I., Khan, W. U. R., Ullah, S., Mufti, N., & Glowacz, A. (2020). Design and experimental analysis of multiband frequency reconfigurable antenna for 5G and sub-6 GHz wireless communication. Micromachines, 12(1), 32.

    Article  Google Scholar 

  76. Ullah, S., Elfergani, I., Ahmad, I., Din, I. U., Ullah, S., Rehman Khan, W. U., & Rodriguez, J. (2022). A compact frequency and radiation reconfigurable antenna for 5G and multistandard sub-6 GHz wireless applications. Wireless Communications and Mobile Computing, 2022, 1–12.

    Google Scholar 

  77. Ahmad, I., Dildar, H., Khan, W. U. R., Shah, S. A. A., Ullah, S., Ullah, S., & Vasudevan, K. (2021). Design and experimental analysis of multiband compound reconfigurable 5G antenna for sub-6 GHz wireless applications. Wireless Communications and Mobile Computing, 2021, 1–14.

    Article  Google Scholar 

  78. Iqbal, J., Illahi, U., Yasin, M. N. M., Albreem, M. A., & Akbar, M. F. (2022). Bandwidth enhancement by using parasitic patch on dielectric resonator antenna for sub-6 GHz 5G NR bands application. Alexandria Engineering Journal, 61(6), 5021–5032.

    Article  Google Scholar 

  79. Supreeyatitikul, N., Janpangngern, P., Lertwiriyaprapa, T., Krairiksh, M., & Phongcharoenpanich, C. (2023). CMA-based quadruple-cluster leaf-shaped metasurface-based wideband circularly-polarized stacked-patch antenna array for sub-6 GHz 5G applications. IEEE Access, 11, 14511–14523.

    Article  Google Scholar 

  80. Askari, H., Hussain, N., Choi, D., Sufian, M. A., Abbas, A., & Kim, N. (2021). An AMC-based circularly polarized antenna for 5G sub-6 GHz communications. Computers, Materials & Continua, 69(3), 2997–3013.

    Article  Google Scholar 

  81. Li, Y., Zhao, Z., Tang, Z., & Yin, Y. (2019). Differentially-fed, wideband dual-polarized filtering antenna with novel feeding structure for 5G sub-6 GHz base station applications. IEEE Access, 7, 184718–184725.

    Article  Google Scholar 

  82. Kareem, Q. H., Shihab, R. A., & Kareem, H. H. (2023). Compact dual-polarized reconfigurable MIMO antenna based on a varactor diode for 5G mobile terminal applications. Progress In Electromagnetics Research C, 137, 185–198.

    Article  Google Scholar 

  83. Abdalrazik, A., Gomaa, A., & Kishk, A. A. (2021). A hexaband quad-circular-polarization slotted patch antenna for 5G, GPS, WLAN, LTE, and radio navigation applications. IEEE Antennas and Wireless Propagation Letters, 20(8), 1438–1442.

    Article  Google Scholar 

  84. Ciydem, M., & Miran, E. A. (2020). Dual-polarization wideband sub-6 GHz suspended patch antenna for 5G base station. IEEE Antennas and Wireless Propagation Letters, 19(7), 1142–1146.

    Article  Google Scholar 

  85. Cheng, B., & Du, Z. (2020). Dual polarization MIMO antenna for 5G mobile phone applications. IEEE Transactions on Antennas and Propagation, 69(7), 4160–4165.

    Article  Google Scholar 

  86. Chang, L., Yu, Y., Wei, K., & Wang, H. (2019). Polarization-orthogonal co-frequency dual antenna pair suitable for 5G MIMO smartphone with metallic bezels. IEEE Transactions on Antennas and Propagation, 67(8), 5212–5220.

    Article  Google Scholar 

  87. Ali, A., Tong, J., Iqbal, J., Illahi, U., Rauf, A., Rehman, S. U., & Ghoniem, R. M. (2022). Mutual coupling reduction through defected ground structure in circularly polarized, dielectric resonator-based MIMO antennas for sub-6 GHz 5G applications. Micromachines, 13(7), 1082.

    Article  Google Scholar 

  88. Al-Yasir, Y. I., Ojaroudi Parchin, N., Elfergani, I., Abd-Alhameed, R. A., Noras, J. M., Rodriguez, J., & Hammed, W. I. (2019). A new polarization-reconfigurable antenna for 5G wireless communications. In broadband communications, networks, and systems: In 9th International EAI conference, Broadnets 2018, proceedings 9 (pp. 431–437). Springer International Publishing.

  89. Parchin, N. O., Basherlou, H. J., & Abd-Alhameed, R. A. (2020). Dual circularly polarized crescent-shaped slot antenna for 5G front-end systems. Progress In Electromagnetics Research Letters, 91, 41–48.

    Article  Google Scholar 

  90. Mazloum, J., Ghorashi, S. A., Ojaroudi, M., & Ojaroudi, N. (2015). Compact triple-band S-shaped monopole diversity antenna for MIMO Applications. Applied Computational Electromagnetics Society Journal, 30(9), 975–980.

    Google Scholar 

  91. AI-Yasir, Y. I., Parchin, N. O., Alabdullah, A., Mshwat, W., Ullah, A., & Abd-Alhameed, R. (2019). New pattern reconfigurable circular disk antenna using two PIN diodes for WiMax/WiFi (IEEE 802.11 a) applications. In 2019 16th international conference on synthesis, modeling, analysis and simulation methods and applications to circuit design (SMACD), 53–56, IEEE.

  92. Ojaroudi Parchin, N., JahanbakhshBasherlou, H., Al-Yasir, Y. I., Abdulkhaleq, A. M., & PatwaryAbd-Alhameed, M. A. R. (2020). A new CPW-Fed diversity antenna for MIMO 5G smartphones. Electronics, 9(2), 261.

    Article  Google Scholar 

  93. Al-Yasir, Y. I., Abdulkhaleq, A. M., Parchin, N. O., Elfergani, I. T., Rodriguez, J., Noras, J. M., & Qahwaji, R. (2021). Green and highly efficient MIMO transceiver system for 5G heterogenous networks. IEEE Transactions on Green Communications and Networking, 6(1), 500–511.

    Article  Google Scholar 

  94. Ojaroudi Parchin, N., Al-Yasir, Y. I., Jahanbakhsh Basherlou, H., Abd-Alhameed, R. A., & Noras, J. M. (2020). Orthogonally dual-polarised MIMO antenna array with pattern diversity for use in 5G smartphones. IET Microwaves, Antennas & Propagation, 14(6), 457–467.

    Article  Google Scholar 

  95. Ojaroudi Parchin, N., Jahanbakhsh, H., Basherlou, Al-Yasir, I. A., Abdulkhaleq, Y. M., & Abd-Alhameed, A. A. R. (2020). Ultra-wideband diversity MIMO antenna system for future mobile handsets. Sensors, 20(8), 2371.

    Article  Google Scholar 

  96. Parchin, N. O., Basherlou, H. J., Al-Yasir, Y. I., & Abd-Alhameed, R. A. (2020). A broadband multiple-input multiple-output loop antenna array for 5G cellular communications. AEU-International Journal of Electronics and Communications, 127, 153476.

    Google Scholar 

Download references

Funding

No fund was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows and all authors reviewed the results and approved the final version of the manuscript. First author (Corresponding author): Suganya E Writing original draft, Methodology, study conception and design, analysis and interpretation of results, Reviewing and editing second author: T Anita Jones Mary Pushpa Conceptualization, data collection, Reviewing and editing Third author: T Prabhu Conceptualization, data collection, Reviewing and editing.

Corresponding author

Correspondence to E. Suganya.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics Approval and Consent to Participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for Publication

All contributors agreed and given consent to Publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suganya, E., Pushpa, T.A.J.M. & Prabhu, T. Advancements in Patch Antenna Design for Sub-6 GHz 5G Smartphone Application: A Comprehensive Review. Wireless Pers Commun 137, 2217–2252 (2024). https://doi.org/10.1007/s11277-024-11484-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11484-7

Keywords

Navigation