Skip to main content

Advertisement

Log in

A New Method for Solving Nonlinear Partial Differential Equations Based on Liquid Time-Constant Networks

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

In this paper, physics-informed liquid networks (PILNs) are proposed based on liquid time-constant networks (LTC) for solving nonlinear partial differential equations (PDEs). In this approach, the network state is controlled via ordinary differential equations (ODEs). The significant advantage is that neurons controlled by ODEs are more expressive compared to simple activation functions. In addition, the PILNs use difference schemes instead of automatic differentiation to construct the residuals of PDEs, which avoid information loss in the neighborhood of sampling points. As this method draws on both the traveling wave method and physics-informed neural networks (PINNs), it has a better physical interpretation. Finally, the KdV equation and the nonlinear Schrödinger equation are solved to test the generalization ability of the PILNs. To the best of the authors’ knowledge, this is the first deep learning method that uses ODEs to simulate the numerical solutions of PDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salinas H M and Fernández D C, Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography, IEEE Trans. Med Imaging., 2007, 26(6): 761–771.

    Article  Google Scholar 

  2. Tagliabue A, Dede L, and Quarteroni A, Isogeometric analysis and error estimates for high order partial differential equations in fluid dynamics, Comput. Fluids, 2014, 102): 277–303.

    Article  MathSciNet  Google Scholar 

  3. Agarwal P, Deniz S, Jain S, et al., A new analysis of a partial differential equation arising in biology and population genetics via semi analytical techniques, Physica A, 2020, 542): 122769.

    Article  MathSciNet  Google Scholar 

  4. Li Y, Chen H, and Xie Y, Stabilization with arbitrary convergence rate for the Schrödinger equation subjected to an input time delay, Journal of Systems Science & Complexity, 2021, 34(3): 975–994.

    Article  MathSciNet  Google Scholar 

  5. Guo Y, Cao X, Liu B, et al., Solving partial differential equations using deep learning and physical constraints, Appl. Sci., 2020, 10(17): 5917.

    Article  Google Scholar 

  6. Liszka T and Orkisz J, The finite difference method at arbitrary irregular grids and its application in applied mechanics, Comput. Struct., 1980, 11(1–2): 83–95.

    Article  MathSciNet  Google Scholar 

  7. LeVeque R J, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 2002.

    Book  Google Scholar 

  8. Reddy J N, Introduction to the Finite Element Method, McGraw-Hill Education, New York, 2019.

    Google Scholar 

  9. Shi D and Wang L, An anisotropic nonconforming finite element scheme with moving grids for parabolic integro-differential equations, Journal of Systems Science & Complexity, 2011, 24(5): 1020–1032.

    Article  MathSciNet  Google Scholar 

  10. Karniadakis G E, Kevrekidis I G, Lu L, et al., Physics-informed machine learning, Nat. Rev. Phys., 2021, 3(6): 422–440.

    Article  Google Scholar 

  11. Heinlein A, Klawonn A, Lanser M, et al., Combining machine learning and domain decomposition methods for the solution of partial differential equations — A review, GAMM-Mitteilungen, 2021, 44(1): e202100001.

    Article  MathSciNet  Google Scholar 

  12. Li Z, Kovachki N, Azizzadenesheli K, et al., Fourier neural operator for parametric partial differential equations, 2020, arXiv: 2010.08895.

  13. Wen G, Li Z, Azizzadenesheli K, et al., U-FNO — An enhanced Fourier neural operator-based deep-learning model for multiphase flow, Adv. Water Resour., 2022, 163): 104180.

    Article  Google Scholar 

  14. Lu L, Jin P, and Karniadakis G E, Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators, 2019, arXiv: 1910.03193.

  15. Raissi M, Perdikaris P, and Karniadakis G E, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 2019, 378): 686–707.

    Article  MathSciNet  Google Scholar 

  16. Yu B, The deep Ritz method: A deep learning-based numerical algorithm for solving variational problems, J. Comput. Phys., 2018, 6(1): 1–12.

    MathSciNet  Google Scholar 

  17. Sirignano J and Spiliopoulos K, DGM: A deep learning algorithm for solving partial differential equations, J. Comput. Phys., 2018, 375): 1339–1364.

    Article  MathSciNet  Google Scholar 

  18. Pang G, Lu L, and Karniadakis G E, fPINNs: Fractional physics-informed neural networks, SIAM J. Sci. Comput., 2019, 41(4): A2603–A2626.

    Article  MathSciNet  Google Scholar 

  19. Zhang D, Lu L, Guo L, et al., Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems, J. Comput. Phys., 2019, 397): 108850.

    Article  MathSciNet  Google Scholar 

  20. Yang L, Meng X, and Karniadakis G E, B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data, J. Comput. Phys., 2021, 425: 109913.

    Article  MathSciNet  Google Scholar 

  21. Pu J C, Li J, and Chen Y, Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints, Chin. Phys. B, 2021, 30(6): 060202.

    Article  Google Scholar 

  22. Mo Y, Ling L, and Zeng D, Data-driven vector soliton solutions of coupled nonlinear Schrödinger equation using a deep learning algorithm, Phys. Lett. A, 2022, 421): 127739.

    Article  Google Scholar 

  23. Eivazi H, Tahani M, Schlatter P, et al., Physics-informed neural networks for solving Reynolds-averaged Navier-Stokes equations, Phys. Fluids, 2022, 34(7): 075117.

    Article  Google Scholar 

  24. Peng W Q, Pu J C, and Chen Y, PINN deep learning method for the Chen-Lee-Liu equation: Rogue wave on the periodic background, Commun. Nonlinear Sci. Numer. Simul., 2022, 105): 106067.

    Article  MathSciNet  Google Scholar 

  25. Zhang Y, Dong H, Sun J, et al., The new simulation of quasiperiodic wave, periodic wave, and soliton solutions of the KdV-mKdV equation via a deep learning method, Comput. Intell. Neurosci., 2021, 2021): 8548482.

    Article  Google Scholar 

  26. Zhang R, Bilige S, and Chaolu T, Fractal solitons, arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method, Journal of Systems Science & Complexity, 2021, 34(1): 122–139.

    Article  MathSciNet  Google Scholar 

  27. Wang L and Yan Z, Data-driven peakon and periodic peakon solutions and parameter discovery of some nonlinear dispersive equations via deep learning, Physica D, 2021, 428): 133037.

    Article  MathSciNet  Google Scholar 

  28. Zhou Z, Wang L, and Yan Z, Data-driven discoveries of Bäcklund transformations and soliton evolution equations via deep neural network learning schemes, Phys. Lett. A, 2022, 450): 128373.

    Article  Google Scholar 

  29. Zhong M, Gong S, Tian S F, et al., Data-driven rogue waves and parameters discovery in nearly integrable PT-symmetric Gross-Pitaevskii equations via PINNs deep learning, Physica D, 2022, 439): 133430.

    Article  MathSciNet  Google Scholar 

  30. Song J and Yan Z, Deep learning soliton dynamics and complex potentials recognition for 1D and 2D PT-symmetric saturable nonlinear Schrödinger equations, Physica D, 2023, 448): 133729.

    Article  Google Scholar 

  31. Fang Z, A high-efficient hybrid physics-informed neural networks based on convolutional neural network, IEEE Trans. Neural Netw. Learn. Syst., 2021, 33(10): 5514–5526.

    Article  MathSciNet  Google Scholar 

  32. Gao H, Sun L, and Wang J X, PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain, J. Comput. Phys., 2021, 428): 110079.

    Article  MathSciNet  Google Scholar 

  33. Ren P, Rao C, Liu Y, et al., PhyCRNet: Physics-informed convolutional-recurrent network for solving spatiotemporal PDEs, Comput. Meth. Appl. Mech. Eng., 2022, 389): 114399.

    Article  MathSciNet  Google Scholar 

  34. Zang Y, Bao G, Ye X, et al., Weak adversarial networks for high-dimensional partial differential equations, J. Comput. Phys., 2020, 411): 109409.

    Article  MathSciNet  Google Scholar 

  35. Jagtap A D, Kawaguchi K, and Karniadakis G E, Adaptive activation functions accelerate convergence in deep and physics-informed neural networks, J. Comput. Phys., 2020, 404: 109136.

    Article  MathSciNet  Google Scholar 

  36. Hasani R M, Lechner M, Amini A, et al., Liquid time-constant networks, Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(9): 7657–7666.

    Article  Google Scholar 

  37. He K M, Zhang X Y, Ren S Q, et al., Deep residual learning for image recognition, Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016, 770–778.

  38. Lu Y, Zhong A, Li Q, et al., Beyond finite layer neural networks: Bridging deep architectures and numerical differential equations, International Conference on Machine Learning, PMLR, 2018: 3276–3285.

  39. Funahashi K and Nakamura Y, Approximation of dynamical systems by continuous time recurrent neural networks, Neural Netw., 1993, 6(6): 801–806.

    Article  Google Scholar 

  40. Moloney T P and Hodnett P F, A new perspective on the N-soliton solution of the KdV equation, Proceedings of the Royal Irish Academy, Section A: Mathematical and Physical Sciences, Royal Irish Academy, 1989, 89A(2): 205–217.

  41. Yang J, Nonlinear Waves in Integrable and Nonintegrable Systems, Society for Industrial and Applied Mathematics, Philadelphia, 2010.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Fang.

Ethics declarations

The authors declare no conflict of interest.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant Nos. 11975143 and 12105161.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Dong, H. & Fang, Y. A New Method for Solving Nonlinear Partial Differential Equations Based on Liquid Time-Constant Networks. J Syst Sci Complex 37, 480–493 (2024). https://doi.org/10.1007/s11424-024-3349-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-024-3349-z

Keywords

Navigation